Menge und Reihe (Mathematik): Unterschied zwischen den Seiten

Aus AnthroWiki
(Unterschied zwischen Seiten)
imported>Odyssee
Keine Bearbeitungszusammenfassung
 
imported>Odyssee
 
Zeile 1: Zeile 1:
[[Datei:Example of a set.svg|mini|Eine Menge von Polygonen]]
Eine unendliche '''Reihe''' ist [[Mathematik|mathematisch]] definiert als [[Folge (Mathematik)|Folge]] der '''Partialsummen''' <math>\left(s_n\right)</math> einer anderen Folge <math>\left(a_i\right)</math>:


Die '''Menge''' (von {{mhd|''manic''}} „viel“) fasst eine endliche oder unendliche [[Anzahl]] beliebiger, wohlunterschiedener '''Elemente''' zu einer Gesamtheit zusammen und ist heute eines der grundlegendsten Konzepte der [[Mathematik]].
Für eine beliebige Folge <math>\left(a_i\right)</math> ist die <math>n</math>-te Partialsumme ist die Summe ihrer ersten <math>n</math> Glieder:


Vereinbarungsgemäß werden die Elemente einer Menge entweder explizit oder durch eine geeignete Definition innerhalb geschwungener Klammern angegeben, z.B. für die abzählbar unendliche Menge der [[Natürliche Zahl|natürlichen Zahlen]] <math>\mathbb{N} = \{1; 2; 3; \ldots\}</math>. Eine Menge, die keine Elemente enthält, wird als '''leere Menge''' <math>\emptyset</math> oder auch <math>\{\}</math> bezeichnet. Wird bei einer Menge auch die Reihenfolge der Elemente berücksichtigt, spricht man von einer ''Folge''
:<math>s_n = a_0 + a_1 + \ldots + a_n = \sum_{i=0}^n a_i</math>  


Die '''Mengenlehre''' wurde in der Zeit von 1874 bis 1897 von [[Wikipedia:Georg Cantor|Georg Cantor]] (1845-1918) begründet. Er definierte den [[Begriff]] „Menge“ wie folgt:
== Konvergenz ==
Falls die Reihe, d.h. die Folge der Partialsummen, [[Konvergenz|konvergiert]], so ist ihr [[Grenzwert]] die ''Summe'' oder der ''Wert'' der Reihe:


{{Zitat|Unter einer „Menge“ verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die „Elemente“ von M genannt werden) zu einem Ganzen.|Georg Cantor<ref>Georg Cantor: ''Beiträge zur Begründung der transfiniten Mengenlehre.'' In: ''[[Wikipedia:Mathematische Annalen|Mathematische Annalen]]'' 46 (1895), S. 481. [http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN237853094&DMDID=DMDLOG_0069&LOGID=LOG_0069&PHYSID=PHYS_0295 Online].</ref>}}
:<math>\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{i=0}^n a_i</math>


Die '''Mächtigkeit''' oder ''Kardinalität'' einer Menge wird durch die '''Kardinalzahl''' angegeben. Für endliche Menge ist sie gleich der [[Anzahl]] ihrer Elemente. Unendliche Mengen können unterschiedliche Mächtigkeiten haben, die durch den [[Hebräisches Alphabet|hebräischen Buchstaben]] <math>\aleph</math> und einen Index bezeichnet werden. Für die abzählbar unendliche Menge der [[Natürliche Zahl|natürlichen Zahlen]], die unter den unendlichen Mengen die geringste Mächtigkeit haben, schreibt man entsprechend <math>\aleph_0</math>. Die ''überabzählbare'' unendliche Menge der [[Reelle Zahl|reellen Zahlen]] hat unter Annahme der [[Wikipedia:Kontinuumshypothese|Kontinuumshypothese]]<ref>Die Kontinuumshypothese besagt, dass es keine Menge gibt, deren Mächtigkeit zwischen der Mächtigkeit der natürlichen Zahlen und der Mächtigkeit der reellen Zahlen liegt. Diese Hypothese hat sich aber als ''unentscheidbar'' erwiesen.</ref> die Mächtigkeit <math>\aleph_1</math>, andernfalls gilt zumindest <math>\aleph_1 \le \left\vert\mathbb{R}\right\vert</math>.
Eine Reihe ist genau dann '''absolut konvergent''', wenn die Reihe ihrer Absolutbeträge <math>\sum_{n=1}^\infty |s_n|</math> konvergiert.


== Einzelnachweise ==
''Konvergente'' Reihen können gliedweise [[Addition|addiert]], [[Subtraktion|subtrahiert]] oder mit einem [[konstante]]n Faktor [[Multiplikation|multipliziert]] werden. ''Absolut konvergierende'' Reihen können auch gliedweise miteinander multipliziert werden. Die resultierende Reihe ist dann ebenfalls konvergent.


<references />
== Beispiele ==


[[Kategorie:Mathematik]] [[Kategorie:Mengenlehre]]
=== Arithmetische Reihe ===
 
Eine '''arithmetische Reihe''' ist die Reihe einer [[Arithmetische Folge|arithmetischen Folge]]. Die Summe einer endlichen arithmetischen Reihe ergibt auf einfache Weise aus dem [[Arithmetisches Mittel|arithmetischen Mittel]] des ersten und des letzten Gliedes:
 
:<math>s_n = \sum_{i=0}^n(a_0 + i \cdot d)  = n \cdot \frac{a_0 + a_n}{2}</math>
 
=== Geometrische Reihe ===
 
Eine '''geometrische Reihe''' ist die Reihe einer [[Geometrische Folge|geometrischen Folge]]. Für eine [[Konvergenz|konvergente]] geometrische Reihe mit <math>|q|<1</math> und folglich <math>\lim_{n \to \infty} q^{n+1}=0</math> ergibt sich dann:
 
:<math>s_n = \sum_{i=0}^{n} a_0 q^i = a_0 + a_0 q + a_0 q^2 + \dotsb + a_0 q^n = a_0\frac{1-q^{n+1}}{1-q}</math>
 
Die Formel für die n-te Partialsumme lässt sich wie folgt herleiten:
 
:<math>s_n = a_0 + a_0 q + a_0 q^2 + \dotsb + a_0 q^n = a_0 (1 + q + q^2 + \dotsb + q^n) |\cdot q</math>
 
:<math>q s_n = a_0 (q + q^2 + q^3 + \dotsb + q^{n+1})</math>
 
Durch Subtraktion der zweiten Gleichung von der ersten und nachfolgender Division durch <math>(1-q)</math> ergibt sich:
 
:<math>s_n - q s_n = a_0 (1 - q^{n+1})</math>
 
:<math>s_n (1-q) = a_0 (1 - q^{n+1}) \  |: (1-q) </math>
 
:<math>s_n = a_0\frac{q^{n+1}-1}{q-1} = a_0\frac{1-q^{n+1}}{1-q}</math>
 
Für den Grenzwert der Reihe folgt daraus:
 
:<math>\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{i=0}^{n} a_0 q^i = \frac{a_0}{1-q}</math>
 
So hat z.B. die Reihe <math>s_n = \sum_{i=0}^{n} \frac1{2^n} = (1, 1 + \frac12, 1 + \frac12 + \frac14, 1 + \frac12 + \frac14 + \frac18, \dots) = (1, \frac32, \frac74, \frac{15}8, \dots) =</math> mit <math>a_0=1</math> und <math>q=\frac12</math> den Grenzwert <math>\lim_{n \to \infty} s_n = \frac1{1 - \frac12} = \frac1{\frac12} = 2</math>
 
== Siehe auch ==
 
* {{WikipediaDE|Reihe (Mathematik)}}
 
[[Kategorie:Mathematik]]

Version vom 22. April 2018, 20:14 Uhr

Eine unendliche Reihe ist mathematisch definiert als Folge der Partialsummen einer anderen Folge :

Für eine beliebige Folge ist die -te Partialsumme ist die Summe ihrer ersten Glieder:

Konvergenz

Falls die Reihe, d.h. die Folge der Partialsummen, konvergiert, so ist ihr Grenzwert die Summe oder der Wert der Reihe:

Eine Reihe ist genau dann absolut konvergent, wenn die Reihe ihrer Absolutbeträge konvergiert.

Konvergente Reihen können gliedweise addiert, subtrahiert oder mit einem konstanten Faktor multipliziert werden. Absolut konvergierende Reihen können auch gliedweise miteinander multipliziert werden. Die resultierende Reihe ist dann ebenfalls konvergent.

Beispiele

Arithmetische Reihe

Eine arithmetische Reihe ist die Reihe einer arithmetischen Folge. Die Summe einer endlichen arithmetischen Reihe ergibt auf einfache Weise aus dem arithmetischen Mittel des ersten und des letzten Gliedes:

Geometrische Reihe

Eine geometrische Reihe ist die Reihe einer geometrischen Folge. Für eine konvergente geometrische Reihe mit und folglich ergibt sich dann:

Die Formel für die n-te Partialsumme lässt sich wie folgt herleiten:

Durch Subtraktion der zweiten Gleichung von der ersten und nachfolgender Division durch ergibt sich:

Für den Grenzwert der Reihe folgt daraus:

So hat z.B. die Reihe mit und den Grenzwert

Siehe auch