Röntgen und Beweisbarkeit: Unterschied zwischen den Seiten

Aus AnthroWiki
(Unterschied zwischen Seiten)
imported>Joachim Stiller
 
imported>Odyssee
(Weiterleitung nach Beweis erstellt)
 
Zeile 1: Zeile 1:
[[Datei:Röntgengerät historisch.jpg|mini|Historisches Röntgengerät zum „Durchleuchten“ der Lunge]]
#WEITERLEITUNG [[Beweis]]
 
'''Röntgen''' (nach dem Physiker [[Wilhelm Conrad Röntgen]]), auch '''Röntgendiagnostik''' genannt, ist ein weit verbreitetes [[bildgebendes Verfahren]], bei dem ein Körper unter Verwendung eines [[Röntgenröhre|Röntgenstrahlers]] durchstrahlt wird. Die Durchdringung des Körpers mit [[Röntgenstrahlung|Röntgenstrahlen]] wird in Bildern dargestellt, die als '''Röntgenbilder''', '''Röntgenaufnahmen''' oder '''Radiographien''' bezeichnet werden.
 
Die Bilder werden etwa auf einem fluoreszierenden Schirm sichtbar. Bei der [[Durchleuchtung]] mit einer [[Röntgenkamera]] wird ein [[Röntgenbildverstärker]] benötigt. Auch geeignetes Filmmaterial kann verwendet werden (Radiographie mit [[Röntgenfilm]]). Stand der Technik ist jedoch [[digitales Röntgen]] (digitale Radiografie). Hier kommen Phosphorplatten ([[Röntgenspeicherfolie]]) oder elektronische Sensoren zum Einsatz, zum Beispiel [[CCD-Sensor|CCDs]]. Die medizinischen Verfahren werden unter [[Radiologie#Radiographie|Radiologie]] genauer dargestellt.
 
== Geschichte ==
Am 8. November 1895 entdeckte [[Wilhelm Conrad Röntgen]] in Würzburg die unsichtbaren Strahlen. Er experimentierte mit einer fast luftleeren [[Kathodenstrahlröhre]] aus Glas. Er deckte sie mit Pappe ab, aber die Strahlen konnten sie durchdringen und zeigten ein zufällig auf dem Tisch liegendes Objekt auf dem Fluoreszenzschirm.<ref>{{Internetquelle |url=http://heureka-stories.de/Erfindungen/1895---Die-R%C3%B6ntgenstrahlen/Die-ganze-Geschichte |titel=Die ganze Geschichte – Heureka Stories |autor=Klaus Lüdtke |werk=heureka-stories.de |datum=2014-01-30 |zugriff=2017-01-15}}</ref><ref>Katrin Pliszka: [http://www.hamburger-wirtschaft.de/html/hw2005/artikel/23_made_in_hamburg/05-64_philips.html ''Philips Medical Systems DMC GmbH: Röntgenröhre „MRC“.''] In: ''hamburger-wirtschaft.de.'' Handwerkskammer Hamburg, Mai 2005, abgerufen am 16. Januar 2017.</ref> Am 28. Dezember übergab er seine erste schriftliche Mitteilung „Über eine neue Art von Strahlen“ der [[Physikalisch-Medizinische Gesellschaft|Physikalisch-Medizinischen Gesellschaft zu Würzburg]] und am 23. Januar 1896 kam es zur ersten öffentlichen Demonstration seiner neuen Entdeckung.<ref>Heinz Otremba, [[Walther Gerlach]]: ''Wilhelm Conrad Röntgen. Ein Leben im Dienste der Wissenschaft.'' Würzburg 1970.</ref><ref>[[Horst Teichmann]]: ''Die Entwicklung der Physik im 4. Saeculum der Universität Würzburg erläutert an der Geschichte eines Institutsgebäudes.'' In: [[Peter Baumgart]] (Hrsg.): ''Vierhundert Jahre Universität Würzburg. Eine Festschrift.'' Neustadt/Aisch 1982 (= ''Quellen und Beiträge zur Geschichte der Universität Würzburg.'' Band 6), S. 787–807; hier: S. 793 f.</ref> Er verzichtete auf eine [[Patent]]ierung, damit die Röntgenapparate schneller eingesetzt werden konnten.<ref>[https://www.welt.de/print-welt/article490586/Roentgen-verzichtete-auf-ein-Patent.html ''Röntgen verzichtete auf ein Patent.''] [[Die Welt]], 3. Dezember 2001.</ref> Für seine Entdeckung erhielt Röntgen 1901 den ersten Nobelpreis für Physik.
Ausgehend von Röntgens Entdeckung entwickelte [[Carl Heinrich Florenz Müller]] gemeinsam mit Ärzten die erste wassergekühlte [[Anode]].
 
Im [[Deutsches Röntgen-Museum|Deutschen Röntgen-Museum]] in Röntgens Geburtsort [[Remscheid]]-[[Lennep]] sind zahlreiche historische Röntgenapparate ausgestellt.
 
== Anwendung in der Medizin ==
[[Datei:Salle radiologie 2.jpg|mini|Verschiedene medizinische Röntgenbilder ([[Computertomographie]])]]
[[Datei:Marknagel in der Elle.png|mini|Röntgenbild eines gebrochenen Unterarms mit Marknagel in der Elle]]
[[Datei:Ferse rs.jpg|mini|Röntgenbild einer Fersentrümmerfraktur mit Verplattung]]
[[Datei:Dental X-Ray.jpg|mini|Panorama-Röntgenanlage für Bilder vom Kiefer]]
[[Datei:DenticiónMixta.jpg|mini|Dentitionsaufnahme der Zähne eines 5 Jahre und 7 Monate alten Mädchens]]
[[Datei:Thorax pa peripheres Brronchialcarcinom li OF.jpg|mini|Röntgenbild eines Thorax mit Bronchialkarzinom]]
 
=== Prinzip ===
In der [[Medizin]] dient das Röntgen zur Feststellung von Anomalien im Körper, die im Zusammenhang mit Symptomen, Zeichen und eventuell anderen Untersuchungen eine [[Diagnose]] ermöglichen (Röntgendiagnostik). Die unterschiedlich dichten Gewebe des menschlichen (oder tierischen) Körpers absorbieren die Röntgenstrahlen unterschiedlich stark, so dass man eine Abbildung des Körperinneren erreicht ([[Verschattung]], [[Aufhellung]] und andere [[Röntgenzeichen]]). Das Verfahren wird zum Beispiel häufig bei Verdacht auf einen [[Knochenbruch]] angewendet: Zeigt das Röntgenbild eine Unterbrechung der Kontinuität des Knochens, ist der Verdacht bestätigt.
 
Das herkömmliche Röntgenbild zeigt eine Abbildung des dreidimensionalen Objektes (z.&nbsp;B. eines Sprunggelenkes&nbsp;– ugs: Knöchel) auf einer zweidimensionalen Fläche. Daher werden viele Objekte – wie Extremitäten mit fraglich gebrochenen Knochen&nbsp;– aus zwei Richtungen (im Fachjargon: „in 2 Ebenen“) geröntgt. Was aus einer Perspektive (oder Betrachtungsrichtung) noch nicht auffällt, tut dies eventuell aus der anderen. Oder wenn zwei Knochenteile eines Bruches in einer Richtung hintereinander liegen, lässt sich eine Verschiebung der Knochenbruchenden (im Fachjargon: „Dislokation oder Luxation“) erst auf einer zweiten Aufnahme aus einer anderen Richtung darstellen.
Hierzu stehen zu nahezu allen darstellbaren Körperteilen Standardaufnahmetechniken zu Verfügung, um es dem Betrachter nicht jedes Mal abzuverlangen, sich in die Darstellung „einzudenken“.
Ordnet der Arzt Röntgenaufnahmen eines Sprunggelenkes in zwei Ebenen an, kann er davon ausgehen, dass er eine seitliche (im Fachjargon: „tranversale“) Aufnahme mit Darstellung der Gelenkflächen von Schienbein und Sprungbein (und ein paar anderen), sowie eine Aufnahme von vorne nach hinten (im Fachjargon: a.p.&nbsp;= anterior&nbsp;– posterior) mit gut beurteilbaren Innen- und Außenknöcheln erhält.
Sollte es damit noch nicht klar sein, wird vielleicht eine Schichtaufnahme angeordnet, um statt der einfachen „Ubersichtsaufnahmen“ Schnittbilder zu erhalten.
 
Von den  „konventionellen Schichtaufnahmen“ ([[Röntgentomographie]]) unterscheidet sich die modernere Röntgen-[[Computertomographie]] (CT). Bei dieser berechnet ein Computer die Schnittbilder aus den elektronischen Daten, die bei Röntgenaufnahmen aus verschiedenen Richtungen erzeugt werden. CT-Aufnahmen haben eine wesentlich höhere Bildqualität.
 
Häufig werden dem Patienten bei oder vor der Röntgenuntersuchung [[Kontrastmittel]] verabreicht. Manche Strukturen, die sich normalerweise nicht abgrenzen lassen, können so hervorgehoben werden. Zum Teil lässt sich mit einem Kontrastmittel auch die Funktion eines Organsystems darstellen, so etwa in der [[Ausscheidungsurographie|Urografie]]. Je nach Fragestellung bieten sich verschiedene Substanzen und Darreichungsformen an.
 
Um die räumliche Lage insbesondere gebrochener Knochen oder ausgerenkter Gelenke gut erkennen zu können, werden von einer Stelle im Körper zumeist zwei bis drei Bilder aus unterschiedlicher Projektionsrichtung angefertigt.
 
Neben Standbildern können – zumindest seit 2007<!--LKH Graz, Unfallchirurgie--> – etwa bei Einrenkungen und Zurechtrückung von Knochenteilen Röntgen-Videos gefilmt und live am Bildschirm angezeigt werden, um das Öffnen des Körpers per Skalpellschnitt zu vermeiden und dennoch ein aufschlussreiches Bild von der sich verändernden Lage der Knochen zu erhalten. Die im bestrahlten Operationsfeld agierenden Hände der Unfallchirurgen werden dabei möglichst mit Blei-Gummi-Handschuhen geschützt.
 
=== Weiche und harte Strahlung ===
Für unterschiedliche Bereiche des Körpers werden unterschiedliche „Strahlenqualitäten“ benötigt, um unterschiedlich dichte Gewebe, wie z.&nbsp;B. Fettgewebe oder Knochen zu durchdringen. In der Röntgendiagnostik spricht man von weicher und harter Strahlung. Ausschlaggebend ist die Spannung in [[Kilovolt]] (kV), die der [[Röntgenröhre]] zugeführt wird. Je nach dem abzubildenden Körperbereich bzw. der gewünschten Bildaussage wird die Röhrenspannung zwischen etwa 25 und 35&nbsp;kV bei der Mammografie und etwa 38 und 120&nbsp;kV bei den übrigen Körperregionen gewählt.
 
Je weicher die Strahlung (niedrige kV-Werte) ist, desto größer ist der Anteil der vom Gewebe absorbierten Strahlung. Dadurch werden auch feinste Gewebeunterschiede auf dem Röntgenfilm sichtbar gemacht. Dies ist der Fall bei der [[Mammografie]] (Röntgenuntersuchung der weiblichen Brust), jedoch ist die Strahlenbelastung des durchstrahlten Gewebes dadurch relativ hoch. [[Hartstrahltechnik|Harte Strahlung]] (über 100&nbsp;kV) durchdringt Gewebe und Materialien (Gips und sogar Bleischürzen von geringerer Dicke) wesentlich leichter. Kontrastunterschiede werden stark abgemildert, wie z.&nbsp;B. bei Lungenaufnahmen (120&nbsp;kV), bei denen sonst im Bereich der Rippen keine Beurteilung der Lungenstruktur möglich wäre.
 
=== Gefahren ===
Da die angewendeten Strahlendosen in der Röntgendiagnostik potenziell schädlich für den Patienten und den Anwender sind, wird in der Radiologie besonderer Wert auf den Strahlenschutz gelegt. In Deutschland wird Patienten im Falle einer Röntgenuntersuchung vom untersuchenden Arzt angeboten, Informationen wie Datum und bestrahlte Körperregion in einen [[Röntgenpass]] eintragen bzw. sich einen solchen Pass ausstellen zu lassen. Die Sicherheit des Operateurs wird dadurch gewährleistet, dass dieser in einem Nachbarraum eine Taste betätigen muss, ohne die der Röntgenapparat nicht arbeitet. Durch ständiges Gedrückthalten des Auslöseknopfes unter gleichzeitiger Beobachtung des Patienten wird verhindert, dass das Röntgen unkontrolliert ausgelöst oder bei Ohnmacht des Operateurs ungewollt fortgesetzt wird.
 
Jedes Jahr werden weltweit mehrere Milliarden Bilder mithilfe von Strahlentechnik angefertigt – ungefähr ein Drittel dieser Aufnahmen bei Patienten mit akutem Herzinfarkt. Zwischen den Jahren 1980 und 2006 ist die jährliche Dosis um schätzungsweise 700 % angestiegen.<ref>aus ''Medical Tribune.'' 27. November 2009, S. 3</ref>
 
Deutschland nimmt beim Röntgen einen Spitzenplatz ein: etwa 1,3 Röntgenaufnahmen und 2&nbsp;[[Sievert (Einheit)|mSv]] pro Einwohner und Jahr. Auf diese [[Strahlenbelastung]] lassen sich theoretisch 1,5 % der jährlichen Krebsfälle zurückführen.<ref>{{Literatur |Autor=Amy Berrington de González, Sarah Darby |Titel=Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries |Sammelwerk=Lancet |Band=363 |Nummer=9406 |Datum=2004-01-31 |Seiten=345–351 |DOI=10.1016/S0140-6736(04)15433-0}}</ref> Ärzte unterschätzen nach Meinung des Kinderradiologen Christoph M. Heyer die Strahlenbelastung bei der [[Computertomographie]]: Diese machten im Jahr 2003 gut 6 % aller Röntgenuntersuchungen aus, waren aber für mehr als 50 % der medizinischen [[Strahlenexposition]] verantwortlich.<ref>{{Literatur |Autor=C. M. Heyer, S. Peters, S. Lemburg, V. Nicolas |Titel=Einschätzung der Strahlenbelastung radiologischer Thorax-Verfahren: Was ist Nichtradiologen bekannt? |Sammelwerk=RöFö |Band=179 |Nummer=3 |Datum=2007 |ISSN=1438-9029 |Seiten=261–267}} zitiert nach {{Literatur |Autor= |Titel=Der Allgemeinarzt: Fortbildung und Praxis für den Hausarzt |Band= |Nummer=8 |Datum=2007 |ISSN=0172-7249 |Seiten=18}}</ref>
 
Beispiel: Bei der Koronaruntersuchung mittels Computertomographie (CT) erkaufen sich Patienten die erhöhte Sensitivität mit einem gesteigerten Krebsrisiko. So errechneten amerikanische Wissenschaftler, dass bei Zwanzigjährigen eine von 143 mittels [[Koronarangiographie|Koronar]]-CT untersuchten Frauen im Laufe ihres Lebens infolge dieser [[Angiographie]]-Strahlung an Krebs erkrankt, aber nur einer von 686 gleich alten Männern. Die CT-Angiographie der Koronarien scheint vor allem bei Frauen und jungen Menschen das Krebsrisiko nicht unerheblich zu erhöhen.<ref>{{Literatur |Autor=Andrew J. Einstein, Milena J. Henzlova, Sanjay Rajagopalan |Titel=Estimating Risk of Cancer Associated With Radiation Exposure From 64-Slice Computed Tomography Coronary Angiography |Sammelwerk=JAMA |Band=298 |Nummer=3 |Datum=2007 |Seiten=317–323 |Online=[http://jama.ama-assn.org/cgi/content/abstract/298/3/317 Abstract]}}</ref> Kommt ein Patient mit akutem [[Myokardinfarkt]] in die Klinik, wird ihm oft eine Strahlendosis von insgesamt 14,5&nbsp;mSv verabreicht, was etwa 725 [[Thorax]]-Röntgen-Bildern entspricht. Die Dosis, die ein Infarktpatient durch diese [[Katheter]]untersuchung erhält, entspricht 3/4 der erlaubten Menge an [[ionisierend]]en Strahlen, die Arbeiter in deutschen Kernkraftwerken abbekommen dürfen&nbsp;– im ganzen Jahr (20&nbsp;mSv/a).<ref>Prashant Kaul von der Abteilung für Kardiovaskuläre Medizin des Duke University Medical Centers in Durham und Kollegen, Bericht auf der AHA-Tagung 2009.</ref>
 
In einer groß angelegten Studie hatten sie die Daten von 64.074 Patienten analysiert, die zwischen 2006 und 2009 in Lehrkrankenhäusern der USA wegen eines akuten [[Herzinfarkt]]es behandelt worden waren. Insgesamt wurden in diesem Zeitraum 276.651 Untersuchungen mit ionisierenden Strahlen an diesem Kollektiv durchgeführt. 83 % der Herzinfarktpatienten erhielten Röntgenaufnahmen des Thorax, 77 % Katheteruntersuchungen. Zwar sollten laut Meinung des Referenten notwendige Untersuchungen, die ionisierende Strahlen beinhalten, nicht unterbleiben – man sollte aber sicher sein, dass diese angemessen sind.
 
Untersuchungen von US-amerikanischen Forschern ergaben, dass das Risiko für gutartige Hirntumoren sich durch häufiges Röntgen der Zähne verdreifacht. Bei Kindern unter zehn Jahren sogar verfünffacht.<ref>[http://www.scinexx.de/wissen-aktuell-14649-2012-04-11.html ''Häufiges Röntgen beim Zahnarzt erhöht Risiko für Hirntumor: Strahlenbelastung für Kinder unter zehn Jahren besonders schädlich.''] In: ''scinexx.de.'' 11. April 2012, abgerufen am 16. Januar 2016.</ref>
 
Unter welchen Voraussetzungen ein Arzt für Hautschäden wegen einer röntgenärztlichen Untersuchung haftet, ist Gegenstand einer Entscheidung des [[Oberlandesgericht Jena|Oberlandesgerichts Jena]].<ref>[http://www.thueringen.de/olgneu/urteil/entscheidung_neu.asp OLG Jena, Urteil vom 12. Juli 2006], Az.&nbsp;4&nbsp;U&nbsp;705/05, Volltext. Der Senat befasst sich mit der Frage, ob und ggf. unter welchen Voraussetzungen ein Arzt für Hautschäden anlässlich einer Röntgenuntersuchung haftet.</ref>
 
=== Kontrast und Kontrastmittel ===
Die Absorption von Röntgenstrahlung ist abhängig von ihrem Energieniveau (erzielt über unterschiedlich hohe Beschleunigungsspannung) und steigt mit der Anzahl der „im Weg liegenden“ Atome, also der Dicke des Objekt und seiner Atom-Dichte (Atome/Volumen) so wie der Ordnungszahl (Kernladungszahl) Z und Massenzahl A (Atommasse M als Richtwert) der Atome des Materials. Hohle Organe (Atemwege, Lunge, Magen, Darm, Blase) oder Körperhöhlen (Bauchraum) können durch ihren Gehalt an Luft (Gas), eventuell aufgeblasen (mit Luft, Lachgas, Helium) durch wenig Absorption im Gas dargestellt werden.
Andererseits werden Knochen durch das vergleichsweise „schwere“ Calcium-Atom (Z=20/A=40) als Schatten abgebildet, wenn rundum im Wesentlichen Wasser und Kohlenwasserstoffe mit Sauerstoff als schwerstem Atom (Z=8/M=16) vorliegt. Schon Zahn- und Gelenksprothesen aus Titan (Z=22/M=47) heben sich durch ein Mehr an Absorption vom Knochen ab. Solche auf Basis von Stahl (Eisen: Z=26/M=ca. 56) noch stärker, ebenso die Rechts-/Links-Markierungsringerl aus NiRo-Stahl oder Messing.
 
Historisch als frühes oder erstes Kontrastmittel wurde Thorium (90/232) ([[Thorotrast]]) in der [[Angiographie]] eingesetzt, wegen seiner Radioaktivität um 1955 jedoch verboten. Bariumsulfat BaSO4 (Ba: 56/137) in wässriger Aufschlämmung dient zum Abbilden des Magen-Darmtrakts samt dem Tempo der Passage. Organische [[Iod]]verbindungen (I: 53/127) (Iod: 53/127) zur Angiographie (intravenös oder intraarteriell) früh schon Per-Abrodil = Diethanolamin-3,5-diiodpyridon-4-essigsäure mit akuten Nebenwirkungen, später verträglich aromatische Iodderivate.
 
=== Analoges und digitales Röntgen ===
Mittlerweile gilt [[digitales Röntgen]] als Standard in der [[Bildgebendes Verfahren (Medizin)|Bildgebenden Diagnostik]]. Digitales Röntgen hat dabei große Vorteile gegenüber dem herkömmlichen analogen Verfahren. Als wichtigster Punkt gilt die Reduzierung der [[Strahlenbelastung]].
 
Vorteile des digitalen Röntgens gegenüber dem analogen Röntgen:
* Reduktion der Strahlenbelastung
* Die Bilder sind nicht Über- oder Unterbelichtet
* Aufnahmen sofort verfügbar
* Nachbearbeitung am Computer
* Weder Dunkelkammer noch Entwicklungsgerät mit Verbrauchsmaterialien benötigt
* Reduktion der Umweltbelastung<ref>{{Internetquelle |autor=Medizinio GmbH |url=https://medizinio.de/medizintechnik/roentgen/#Digital |titel=Digitales Röntgen und analoges Röntgen im Vergleich |werk=https://medizinio.de/ |hrsg=Medizinio GmbH |datum=2017-11-25 |zugriff=2017-12-04 |sprache=Deutsch}}</ref>
Die Speicherung der digitalen Röntgen-Bilder ist standardisiert. Dies ermöglicht es Ärzten die Dateien weiterzuleiten.
 
=== Bildergalerie ===
<gallery>
X-ray by Wilhelm Röntgen of Albert von Kölliker's hand - 18960123-02.jpg|Historische Aufnahme einer Hand mit Ring ([[Wilhelm Conrad Röntgen|Röntgen]], 23. Januar 1896)
Fotothek df roe neg 0002315 03, Portrait eines Kindes beim Röntgen.jpg|Röntgengerät von Siemens, Foto 1950
Communitive midshaft humeral fracture callus.jpg|Linker gebrochener Oberarm
Fixateur-extern2.jpg|Röntgenbild einer Radiustrümmerfraktur mit Verplattung und [[Fixateur externe]]
Polydactyly 01 Lhand AP.jpg|Eine moderne Aufnahme einer linken Hand mit 6 Fingern ([[Polydaktylie]])
X-Ray Skull.jpg|Röntgenbild eines männlichen Schädels
Ankle1.jpg|[[Sprunggelenk]]
Röntgenaufnahme eines Zwergkaninchens.jpg|Röntgenbild eines [[Zwergkaninchen (Hauskaninchen)|Zwergkaninchens]]
Roentgen-Roehre.svg|Schematische Darstellung einer [[Röntgenröhre]]
</gallery>
 
== Weitere technische Anwendungen ==
=== Sicherheit ===
[[Datei:X-ray truck unit 5688.JPG|mini|Mobile Durchleuchtungseinheit für LKW und Busse der Bundeszollverwaltung]]
 
An manchen Kontrollpunkten wird Röntgentechnik in [[Scanner (Sicherheitstechnik)|Scannern]] angewendet, um zeitsparend, aber wirksam Hohlräume oder [[Körperscanner|Menschen]] zu durchleuchten.
Es gibt Röntgengeräte (z.&nbsp;B. das „Cab2000“), die ganze LKW-Ladungen oder Container durchleuchten können.<ref>{{Internetquelle |autor=Tim Stinauer |url=http://www.ksta.de/html/artikel/1270457782151.shtml |titel=Durchblick der besonderen Art |werk=ksta.de |hrsg= |datum=2010-05-04 |archiv-url= https://archive.is/20120915092037/http://www.ksta.de/html/artikel/1270457782151.shtml|archiv-datum= 2012-09-15|zugriff=2017-01-16 }}</ref>
 
Zudem wird das Röntgen auch bei der [[Delaborierung]] von Bomben zur Hilfe genommen; dies dient der [[Analyse]].
 
=== Materialprüfung ===
Weitere Anwendungen findet man beim Röntgen in der [[Werkstoffprüfung]].
Durch Röntgen kann man im Verlauf der [[Durchstrahlungsprüfung]] Objekte auf Risse und Hohlräume im Innern untersuchen. Dies geschieht mit sogenannten Röntgenrefraktionsanlagen, meist mit einem Belastungsmechanismus zum leichten Öffnen der Mikrorisse (engl. crazes).<ref>{{Webarchiv | url=http://www.bam.de/de/service/publikationen/publikationen_medien/abt_prospekt_8.pdf | wayback=20070328085302 | text=BAM-Prospekt}} (PDF; 220&nbsp;kB)</ref>
 
=== Qualitätskontrolle in der Nahrungsmittelproduktion ===
Immer häufiger verlangen große Handelsketten von den Nahrungsmittelherstellern eine bessere Detektion von Fremdkörpern zur Erhöhung der Produktqualität. Nachdem der Metalldetektor in den letzten Jahren das Mittel der Wahl war, kommen jetzt immer häufiger Röntgensysteme zum Einsatz. Diese Röntgensysteme bestehen zum einen aus dem bekannten Röntgensystem (Röhre/[[Kollimator]] und Empfänger) sowie aus einer weitentwickelten computergestützten Bildverarbeitung mit Aussteuergerät. Das heißt, das Röntgenbild des jeweiligen Nahrungsmittels wird hinsichtlich möglicher Verunreinigungen (Kontaminationen) mittels spezieller Computerprogramme untersucht. Sollte die Röntgenbildanalyse ergeben, dass ein Nahrungsmittel verunreinigt ist, so wird dem angeschlossenen Aussteuergerät umgehend mitgeteilt, dass dieses Nahrungsmittel auszusteuern ist. Es landet im Abfallbehälter.
 
Allerdings sind gerade zu Beginn des Einsatzes solcher Röntgensysteme in der Nahrungsmittelindustrie Hürden zu überwinden. Die Angst vor einer Belastung durch mögliche Strahlung ist oft groß und bedarf einer Aufklärung. Abgesehen von Röntgensystemen, die Nahrungsmittel bestrahlen, um sie haltbarer zu machen, ist die Röntgenuntersuchung hinsichtlich möglicher Kontaminationen absolut ohne jegliche Wirkung auf das Nahrungsmittel selbst. Das Röntgen hat hier weder eine haltbarmachende noch eine zerstörende Wirkung. Was bleibt, ist die Sicherheit des Röntgensystems für den Anwender. Da Röntgen in Deutschland gemäß der [[Verordnung über den Schutz vor Schäden durch Röntgenstrahlen]] genehmigungspflichtig ist, sind die Hürden für mögliche Verletzungen sehr hoch. Letzten Endes hängt die jeweilige Sicherheit von dem Betreiber selbst und dem erworbenen System ab. Vergessen sollte man jedoch nicht, dass das medizinische Röntgen und Flugreisen (in normaler Höhe) temporär weit größere Belastungen mit sich bringen, als es bei einem Röntgensystem zur Qualitätssicherung der Fall ist. Wer sich in feuchten Kellern von Häusern oder in Wasserwerken aufhält, bekommt in der Regel höhere Ausschläge auf dem Messgerät (Dosimeter) als vor dem eingeschalteten Röntgensystem. Sie kommt aus dem Erdboden wie auch aus dem Weltraum zu uns und wird mitgemessen.
 
Ein Röntgensystem kann metallische und nichtmetallische Kontaminationen detektieren, jedoch nicht alle. Röntgen ist zum heutigen Zeitpunkt (2005) die einzige Möglichkeit, um möglichst viele und unterschiedliche kleine Kontaminationen in Nahrungsmittel erkennen zu können. Die Annahme, das Produkt sei nach der Untersuchung zu 100 % kontaminationsfrei, ist jedoch falsch. Sicher ist, dass in den kommenden Jahren mittels besserer Technik das Detektionsvermögen noch weiter gesteigert werden kann. Man wird aber nie alles finden können. Das hängt in erster Linie damit zusammen, dass je näher die „Röntgeneffekte“ von Kontaminationen und dem eigentlichen Produkt zusammenliegen, es dem bildverarbeitenden System auch umso schwerer fällt, zwischen beiden zu unterscheiden. In der sogenannten [[Hounsfield-Skala]] sind Röntgeneffekte unterschiedlichster Materialien aufgelistet. Je näher sich die jeweiligen Materialien in dieser Liste sind, umso schlechter vermag ein Röntgendetektor sie zu unterscheiden (Beispiel: Fleisch und Fett). Ist hingegen der Unterschied groß, wie z.&nbsp;B. zwischen einem Käsestück (verpackt oder unverpackt) und einem kleinen Stein oder Eisen- oder Aluminiumstück, so fällt es dem Röntgendetektor besonders leicht, die Verunreinigungen im Käse zu erkennen und auszusortieren.
 
== Siehe auch ==
* {{WikipediaDE|Röntgen}}
* [[Geschichte des Strahlenschutzes]]
* [[Röntgenfilm]]
* [[Radiologie]]
* [[Gustav Peter Bucky]] (Radiologe)
* [[Kristallographie]]
* [[Flachbilddetektor für Röntgenstrahlen]]
* [[PIXE]] (Partikel-induzierte Röntgenemission, bzw. Proton-induzierte Röntgenemission)
* [[Pedoskop]] (historische Anwendung von Röntgengeräten in Schuhgeschäften)
 
== Literatur ==
* E. C. Petri: ''Der Röntgenfilm. Eigenschaften und Verarbeitung.'' Fotokino, Halle 1960.
* Günter W. Kauffmann (Hrsg.): ''Röntgenfibel: Praktische Anleitung für Eingriffe in der Röntgendiagnostik und interventionellen Radiologie.'' 3. Aufl., Springer Verlag, Berlin / Heidelberg / Tokio / New York 2001, ISBN 3-540-41018-X.
* Wilfried Angerstein (Hrsg.): ''Grundlagen der Strahlenphysik und radiologischen Technik in der Medizin.'' Hoffmann, Berlin 5. neu bearb. A. 2005, ISBN 3-87344-123-3.
* Ulrich Mödder, Uwe Busch (Hrsg.): ''Die Augen des Professors. Wilhelm Conrad Röntgen – eine Kurzbiografie.'' Vergangenheitsverlag, Berlin 2008, ISBN 978-3-940621-02-3.
* Howard H. Seliger: ''Wilhelm Conrad Röntgen and the Glimmer of Light.'' Physics Today, November 1995, 25–31, [[doi:10.1063/1.881456]].
 
== Weblinks ==
{{Wiktionary|röntgen}}
{{Commonscat|X-rays|Röntgenstrahlung}}
* [http://www.gesundheitpro.de/partner/surfmed/diagnose/bilder_und_kurven/roentgenuntersuchung Röntgenuntersuchung]
* [http://www.neues-roentgen-museum.de/ Neues Deutsches Röntgen Museum]
* [http://www.wilhelmconradroentgen.de/ Röntgen-Gedächtnisstätte Würzburg]
* {{Webarchiv | url=http://www.bfs.de/de/bfs/druck/strahlenthemen/STTH_Roentgen.pdf | wayback=20110812142202 | text=Röntgendiagnostik – schädlich oder nützlich?}} (PDF, 1,5&nbsp;MiB)
 
== Einzelnachweise ==
<references />
 
{{Normdaten|TYP=s|GND=4139158-5}}
 
[[Kategorie:Radiologie]]
[[Kategorie:Knochen]]
 
{{Wikipedia}}

Aktuelle Version vom 17. August 2018, 09:27 Uhr

Weiterleitung nach: