Industriegesellschaft und Starke Wechselwirkung: Unterschied zwischen den Seiten

Aus AnthroWiki
(Unterschied zwischen Seiten)
imported>Joachim Stiller
 
imported>Joachim Stiller
 
Zeile 1: Zeile 1:
Die '''Industriegesellschaft''' ist gekennzeichnet durch einen hohen Grad der [[Industrialisierung]] und den damit verbundenen [[Produktion]]s­weisen und [[Sozialstruktur|sozialen Strukturen]]. Die jeweilige [[Wirtschaftsordnung]] bleibt bei dieser Begriffsdefinition unberücksichtigt. Industriegesellschaften entstanden in der Folge eines Prozesses, der als [[Industrielle Revolution]] bezeichnet wird. Aus Sicht der Ethnologie werden sie als sogenannte [[Kalte und heiße Kulturen oder Optionen|„heiße“ Kulturen]] betrachtet, bei denen Fortschritt und Entwicklung das entscheidende Leitbild der zugrundeliegenden [[Weltanschauung]]en sind.
[[Datei:Gluon_coupling.svg|mini|400px|[[Feynman-Diagramm|Feynman-Diagramme]] zu den fundamentalen Kopplungsmöglichkeiten der starken Wechselwirkung, von links nach rechts: Abstrahlung eines Gluons, Aufspaltung eines Gluons und „Selbstkopplung“ der Gluonen.]]


== Merkmale ==
Die '''starke Wechselwirkung''' (auch '''starke Kraft''', '''Gluonenkraft''', '''Farbkraft''', aus historischen Gründen '''Kernkraft''' oder '''starke Kernkraft''' genannt) ist eine der vier [[Fundamentale Wechselwirkung|Grundkräfte der Physik]]. Mit ihr wird die [[Gebundener Zustand|Bindung]] zwischen den [[Quark (Physik)|Quarks]] in den [[Hadron]]en erklärt. Ihre [[Austauschteilchen]] sind die [[Gluon]]en.
Wesentliche Merkmale der Industrie[[Gesellschaft (Soziologie)|gesellschaft]] sind die [[Produktion]] in [[Fabrik]]en und ein hoher Grad der [[Arbeitsteilung]]. Meist ist dies mit einer zunehmenden räumlichen Trennung von Arbeits- und Wohnstätten verbunden. Charakteristisch für die Industriegesellschaft sind ferner der Trend zur [[Verstädterung]], eine Zunahme der [[Bürokratie|Bürokratisierung]], die Erhöhung des materiellen [[Lebensstandard]]s, [[Umweltverschmutzung|Umweltprobleme]] sowie eine Konzentration des Produktiv[[kapital]]s.


== Industriegesellschaft als Zwischenstufe ==
Vor der Einführung des Quark-Modells wurde als starke Wechselwirkung die Anziehungskraft zwischen den [[Nukleon]]en ([[Proton]]en und [[Neutron]]en) des [[Atomkern]]s bezeichnet. Auch heute noch ist mit der starken Wechselwirkung oft nur diese ''Restwechselwirkung'' gemeint.
Die Industriegesellschaft wird als Stufe zwischen der [[Agrargesellschaft]] und der [[Dienstleistungsgesellschaft]] betrachtet; dies geht zurück auf eine Interpretation der [[Drei-Sektoren-Theorie]] von [[Jean Fourastié|Fourastié]] und anderen.


In hochindustrialisierten, markt[[wirtschaft]]lich orientierten [[Volkswirtschaft]]en ist heute der Anteil des Dienstleistungsbereichs an der [[Wertschöpfung (Wirtschaft)|Wertschöpfung]] größer als der des sekundären Sektors. Dort ist vielfach auch ein Prozess der [[Deindustrialisierung]] zu beobachten. [[Industrie]]n südostasiatischer [[Billiglohnland|Billiglohnländer]] verdrängten die konkurrierenden Industrien aus Industrieländern von vielen Märkten (z. B. [[Textilindustrie]] bzw. [[Textil- und Bekleidungsindustrie]] - siehe auch [[Textilindustrie in Bangladesch]]). Zunächst dominierte Japan, dann folgten die [[Tigerstaaten]] (Südkorea, Taiwan und Singapur sowie Hongkong) und die [[Volksrepublik China]]. Inzwischen wandern schon Industrien von China in noch billigere Länder wie [[Vietnam]] und [[Kambodscha]] ab.
== Bindung zwischen Quarks ==
[[Datei:Neutron QCD Animation.gif|miniatur|150px|Wechselwirkung innerhalb eines Neutrons (Beispiel). Die Gluonen sind dargestellt als Punkte mit der [[Farbladung]] im Zentrum und der Antifarbe am Rand.]]
 
Nach der [[Quantenchromodynamik]] (im Folgenden: QCD) wird die starke Wechselwirkung – wie die [[Elektromagnetische Wechselwirkung|elektromagnetische]] und die [[schwache Wechselwirkung]] – durch den Austausch von [[Eichboson]]en beschrieben. Die Austauschteilchen der starken Wechselwirkung werden als [[Gluon]]en bezeichnet, von denen es acht Sorten (unterschiedliche [[Farbladung]]s<nowiki />zustände) gibt. Die Gluonen übertragen eine Farbladung zwischen den Quarks. Ein Gluon kann dabei mit anderen Gluonen interagieren und Farbladungen austauschen.
 
[[Datei:Strong Interaction Potential.svg|miniatur|Potential zwischen zwei Quarks in Abhängigkeit ihres Abstands. Zusätzlich sind die mittleren Radien verschiedener Quark-Antiquark-Zustände gekennzeichnet.]]
Die Anziehungskraft zwischen Quarks bleibt auch bei steigender Entfernung konstant, anders als z.&nbsp;B. bei der [[Coulombsches Gesetz|Coulombkraft]], bei der es mit steigendem Abstand immer leichter wird, zwei sich anziehende Teilchen zu trennen. Sie ist damit grob vergleichbar mit einem Gummiseil oder einer [[Zugfeder]]. Wird der Abstand zu groß, „reißt“ das Seil in dieser Analogie und es wird ein [[Meson]] gebildet durch Erzeugung eines Quark-Antiquark-Paares aus dem Vakuum. Bei kleinem Abstand können die Quarks wie [[Freies Teilchen|freie Teilchen]] betrachtet werden ([[asymptotische Freiheit]]). Mit größerem Abstand bewirkt die zunehmende Wechselwirkungsenergie, dass die Quarks den Charakter selbstständiger Teilchen verlieren, weswegen sie nicht als freie Teilchen beobachtet werden können ([[Confinement]]).
 
== Bindung zwischen Nukleonen ==
Obwohl Nukleonen immer die Farbladung null haben, gibt es zwischen ihnen eine ''Restwechselwirkung'' oder ''Kernkraft'' (entfernt vergleichbar den [[Van-der-Waals-Kräfte]]n, die man als elektromagnetische Restwechselwirkungen zwischen elektrisch neutralen [[Atom]]en und/oder [[Molekül]]en ansehen kann).
 
Die Reichweite der Anziehung durch die Restwechselwirkung liegt bei etwa 2,5&nbsp;[[Femtometer]]n (fm). Bei diesem Wert des Abstands <math>r</math> ist sie vergleichbar stark wie die elektrische Abstoßung ([[Coulombsches Gesetz|Coulombkraft]]) zwischen den Protonen und bei kürzeren Abständen ist sie stärker als die Coulombkraft. Oberhalb dieses Abstandes dagegen nimmt die Anziehung schneller ab als die Coulombkraft, die proportional zu <math>1/r^2</math> sinkt. Dieses Zusammenspiel der beiden Grundkräfte erklärt den Zusammenhalt und die Größenordnung der Atomkerne, aber z.&nbsp;B. auch die [[Kernspaltung|Spaltung schwerer Kerne]].
 
Auf sehr kurze Abstände wirkt die Kernkraft abstoßend, entsprechend einem harten Kern (Hard Core) von 0,4 bis 0,5 fm. Außerdem ist sie Spin-abhängig: sie ist stärker bei parallelen Spins als bei antiparallelen, so dass das [[Deuteron]] (bestehend aus einem Neutron und einem Proton) nur für parallele Spins (Gesamtspin 1) gebunden ist, und [[Diproton]] und [[Dineutron]] (mit antiparallelen Spins aufgrund des [[Pauli-Prinzip]]s) nicht gebunden sind. Neben dem Zentralpotential-Anteil und dem Spin-Spin-Wechselwirkungsanteil hat sie auch einen Tensoranteil und einen Spin-Bahn-Anteil.
 
Vor der Einführung des Quark-Modells wurden die Restwechselwirkung und ihre geringe Reichweite mit einer [[Effektive Theorie|effektiven Theorie]] erklärt: durch den [[Pion #Das Pion-Austauschmodell|Austausch von Pionen zwischen den Nukleonen]] ([[Yukawa-Potential]]) und die Masse der Pionen. Außerdem wurde in den Nukleon-Nukleon-Potential-Modellen der Austausch weiterer Mesonen berücksichtigt (wie dem [[Rho-Meson]]). Da Berechnungen der Kernkraft mit der QCD bisher nicht möglich sind, benutzt man zum Beispiel in der Beschreibung der Nukleon-Nukleon-Streuung verschiedene phänomenologisch angepasste Potentiale, die auf Mesonenaustauschmodellen basieren (wie das Bonn-Potential).
 
=== Erklärung der Restwechselwirkung ===
[[Datei:Pn scatter pi0.svg|miniatur|300px|[[Feynman-Diagramm]] einer starken [[Proton]]-[[Neutron]]-Wechselwirkung vermittelt durch ein neutrales [[Pion]]. Die Zeit-Achse verläuft von links nach rechts.]]
 
[[Datei:Pn Scatter Quarks.svg|miniatur|300px|Dasselbe Diagramm mit den einzelnen Konstituenten-[[Quark (Physik)|Quarks]] gezeigt, um darzustellen, wie die ''fundamentale'' starke Wechselwirkung eine „Kernkraft“ erzeugt. Gerade Linien sind Quarks, vielfarbige Schleifen [[Gluonen]] (Träger der [[Grundkräfte der Physik|Grundkraft]]). Andere Gluonen, welche Proton, Neutron und Pion (im „Flug“) zusammenhalten, sind nicht dargestellt.]]
 
[[Datei:Nuclear Force anim smaller.gif|miniatur|350px|Eine Animation der Wechselwirkung, die zwei kleinen farbigen Punkte sind Gluonen. Anti-Farben können [[:Datei:Quark Anticolours.png|diesem Diagramm]] entnommen werden. ([//upload.wikimedia.org/wikipedia/commons/d/de/Nuclear_Force_anim.gif größere Version])]]
 
Zwischen Atomen ist das abstoßende [[Potential (Physik)|Potential]] bei kleinen Abständen eine Folge des [[Pauli-Prinzip]]s für die [[Elektron]]en<nowiki />zustände. Bei Annäherung zweier Nukleonen mit sechs Quarks hat jedes Quark aber erheblich mehr Freiheitsgrade im niedrigsten Zustand (Bahndrehimpuls l=0): neben [[Spin]] (2&nbsp;Zustände) noch eine Farbladung (3&nbsp;Zustände) und [[Isospin]] (2&nbsp;Zustände), zusammen also 12, auf die sich die sechs Quarks nach dem Pauli-Prinzip verteilen können.<ref>Die Gesamtwellenfunktion ist antisymmetrisch und damit muss, da der Farbanteil immer antisymmetrisch ist (Gesamtfarbladung Null) bei symmetrischer Raum-Wellenfunktion (Bahndrehimpuls 0) der Spin-Isospin-Anteil auch symmetrisch sein</ref> Das Pauli-Prinzip ist hier nicht unmittelbar für die Abstoßung verantwortlich, die sich unterhalb etwa 0,8 fm bemerkbar macht. Der Grund liegt vielmehr in der starken Spin-Spin-Wechselwirkung der Quarks, die sich augenfällig darin ausdrückt, dass die [[Delta-Resonanz]] (mit parallelen Spins der drei Quarks) eine um etwa ein Drittel höhere Masse als das Proton hat. Stehen also die Spins der Quarks parallel zueinander, so nimmt die [[potentielle Energie]] des Systems zu. Dies gilt auch bei sich überlappenden Nukleonen, und zwar umso stärker, je geringer der Abstand der Nukleonen voneinander ist. Versuchen die Quarks durch Umkehrung des Spins ihre ''chromomagnetische'' Energie zu minimieren, gelingt dies nur durch Übergang in einen energetisch höheren Bahndrehimpulszustand (l=1).<ref>Diskussion nach Povh, Rith, Schulze, Zetsche ''Teilchen und Kerne'', S. 250f, dort nach Amand Fäßler</ref>
 
Mit noch größerem Abstand voneinander gelangen die Nukleonen in den anziehenden Teil der starken Wechselwirkung. Hierbei spielt weniger der Quark-Quark-Austausch (zwei Quarks sind gleichzeitig beiden beteiligten Nukleonen zugeordnet), den man in Analogie zur [[Kovalente Bindung|kovalenten Bindung]] erwartet, eine Rolle, als vielmehr der von farbneutralen Quark-Antiquark-Paaren (Mesonen) aus dem ''[[Seequark]]''-Anteil der Nukleonwellenfunktion in der QCD.
 
Eine vollständige Beschreibung der Kernkraft aus der Quantenchromodynamik ist jedoch bisher nicht möglich.
 
== Die starke Wechselwirkung im Gefüge einer möglicherweise einmal gefundenen [[Weltformel]] ==
{{Tabelle der Grundkräfte}}


== Siehe auch ==
== Siehe auch ==
* {{WikipediaDE|Industriegesellschaft}}
* {{WikipediaDE|Starke Wechselwirkung}}
 
== Literatur ==
* Manfred Böhm, Ansgar Denner, Hans Joos: ''Gauge theories of the strong and electroweak interaction'', Teubner-Verlag, Stuttgart 2001, ISBN 978-3-519-23045-8 (deutsches Original: Becher-Böhm-Joos, ''Eichtheorien der starken und elektroschwachen Wechselwirkung'') – ein Standardwerk für die Theorie
* Bogdan Povh, Klaus Rith, Christoph Scholz, Frank Zetsche ''Teilchen und Kerne'', 8. Auflage, Springer Verlag 2009
* Wolfgang Wild ''Kernkräfte und Kernstruktur'', Teil 1,2, Physikalische Blätter 1977, S. 298, 356, [http://onlinelibrary.wiley.com/doi/10.1002/phbl.19770330703/abstract Teil 1], [http://onlinelibrary.wiley.com/doi/10.1002/phbl.19770330804/abstract Teil 2]


== Weblinks ==
== Weblinks ==
* {{HLS|25614|Industriegesellschaft|Autor= François Höpflinger}}
* Marc Gänsler: [http://www.drillingsraum.de/4_grundkraefte_physik/4_grundkraefte_physik.html ''Die starke Wechselwirkung''.] In: ''Einführung: Die 4 Grundkräfte der Physik'', abgerufen 30. Januar 2009.
* [http://www.physicsmasterclasses.org/exercises/kworkquark/de/kennenlernen/artikel.teilchen-und-kraefte-3/9/1/index.html ''Gluonen und die starke Kraft''.] DESYs Kwork Quark, ''»Teilchenphysik für alle«''
 
==Einzelnachweise==
<references />


[[Kategorie:Gesellschaftsmodell]]
[[Kategorie:Artikel mit Animation]]
[[Kategorie:Wirtschaftswissenschaft]]
[[Kategorie:Quantenfeldtheorie]]
[[Kategorie:Wirtschaftsordnung]]
[[Kategorie:Quantenphysik]]
[[Kategorie:Kernphysik]]


{{Wikipedia}}
{{Wikipedia}}

Version vom 2. April 2019, 16:20 Uhr

Feynman-Diagramme zu den fundamentalen Kopplungsmöglichkeiten der starken Wechselwirkung, von links nach rechts: Abstrahlung eines Gluons, Aufspaltung eines Gluons und „Selbstkopplung“ der Gluonen.

Die starke Wechselwirkung (auch starke Kraft, Gluonenkraft, Farbkraft, aus historischen Gründen Kernkraft oder starke Kernkraft genannt) ist eine der vier Grundkräfte der Physik. Mit ihr wird die Bindung zwischen den Quarks in den Hadronen erklärt. Ihre Austauschteilchen sind die Gluonen.

Vor der Einführung des Quark-Modells wurde als starke Wechselwirkung die Anziehungskraft zwischen den Nukleonen (Protonen und Neutronen) des Atomkerns bezeichnet. Auch heute noch ist mit der starken Wechselwirkung oft nur diese Restwechselwirkung gemeint.

Bindung zwischen Quarks

Wechselwirkung innerhalb eines Neutrons (Beispiel). Die Gluonen sind dargestellt als Punkte mit der Farbladung im Zentrum und der Antifarbe am Rand.

Nach der Quantenchromodynamik (im Folgenden: QCD) wird die starke Wechselwirkung – wie die elektromagnetische und die schwache Wechselwirkung – durch den Austausch von Eichbosonen beschrieben. Die Austauschteilchen der starken Wechselwirkung werden als Gluonen bezeichnet, von denen es acht Sorten (unterschiedliche Farbladungszustände) gibt. Die Gluonen übertragen eine Farbladung zwischen den Quarks. Ein Gluon kann dabei mit anderen Gluonen interagieren und Farbladungen austauschen.

Potential zwischen zwei Quarks in Abhängigkeit ihres Abstands. Zusätzlich sind die mittleren Radien verschiedener Quark-Antiquark-Zustände gekennzeichnet.

Die Anziehungskraft zwischen Quarks bleibt auch bei steigender Entfernung konstant, anders als z. B. bei der Coulombkraft, bei der es mit steigendem Abstand immer leichter wird, zwei sich anziehende Teilchen zu trennen. Sie ist damit grob vergleichbar mit einem Gummiseil oder einer Zugfeder. Wird der Abstand zu groß, „reißt“ das Seil in dieser Analogie und es wird ein Meson gebildet durch Erzeugung eines Quark-Antiquark-Paares aus dem Vakuum. Bei kleinem Abstand können die Quarks wie freie Teilchen betrachtet werden (asymptotische Freiheit). Mit größerem Abstand bewirkt die zunehmende Wechselwirkungsenergie, dass die Quarks den Charakter selbstständiger Teilchen verlieren, weswegen sie nicht als freie Teilchen beobachtet werden können (Confinement).

Bindung zwischen Nukleonen

Obwohl Nukleonen immer die Farbladung null haben, gibt es zwischen ihnen eine Restwechselwirkung oder Kernkraft (entfernt vergleichbar den Van-der-Waals-Kräften, die man als elektromagnetische Restwechselwirkungen zwischen elektrisch neutralen Atomen und/oder Molekülen ansehen kann).

Die Reichweite der Anziehung durch die Restwechselwirkung liegt bei etwa 2,5 Femtometern (fm). Bei diesem Wert des Abstands ist sie vergleichbar stark wie die elektrische Abstoßung (Coulombkraft) zwischen den Protonen und bei kürzeren Abständen ist sie stärker als die Coulombkraft. Oberhalb dieses Abstandes dagegen nimmt die Anziehung schneller ab als die Coulombkraft, die proportional zu sinkt. Dieses Zusammenspiel der beiden Grundkräfte erklärt den Zusammenhalt und die Größenordnung der Atomkerne, aber z. B. auch die Spaltung schwerer Kerne.

Auf sehr kurze Abstände wirkt die Kernkraft abstoßend, entsprechend einem harten Kern (Hard Core) von 0,4 bis 0,5 fm. Außerdem ist sie Spin-abhängig: sie ist stärker bei parallelen Spins als bei antiparallelen, so dass das Deuteron (bestehend aus einem Neutron und einem Proton) nur für parallele Spins (Gesamtspin 1) gebunden ist, und Diproton und Dineutron (mit antiparallelen Spins aufgrund des Pauli-Prinzips) nicht gebunden sind. Neben dem Zentralpotential-Anteil und dem Spin-Spin-Wechselwirkungsanteil hat sie auch einen Tensoranteil und einen Spin-Bahn-Anteil.

Vor der Einführung des Quark-Modells wurden die Restwechselwirkung und ihre geringe Reichweite mit einer effektiven Theorie erklärt: durch den Austausch von Pionen zwischen den Nukleonen (Yukawa-Potential) und die Masse der Pionen. Außerdem wurde in den Nukleon-Nukleon-Potential-Modellen der Austausch weiterer Mesonen berücksichtigt (wie dem Rho-Meson). Da Berechnungen der Kernkraft mit der QCD bisher nicht möglich sind, benutzt man zum Beispiel in der Beschreibung der Nukleon-Nukleon-Streuung verschiedene phänomenologisch angepasste Potentiale, die auf Mesonenaustauschmodellen basieren (wie das Bonn-Potential).

Erklärung der Restwechselwirkung

Feynman-Diagramm einer starken Proton-Neutron-Wechselwirkung vermittelt durch ein neutrales Pion. Die Zeit-Achse verläuft von links nach rechts.
Dasselbe Diagramm mit den einzelnen Konstituenten-Quarks gezeigt, um darzustellen, wie die fundamentale starke Wechselwirkung eine „Kernkraft“ erzeugt. Gerade Linien sind Quarks, vielfarbige Schleifen Gluonen (Träger der Grundkraft). Andere Gluonen, welche Proton, Neutron und Pion (im „Flug“) zusammenhalten, sind nicht dargestellt.
Eine Animation der Wechselwirkung, die zwei kleinen farbigen Punkte sind Gluonen. Anti-Farben können diesem Diagramm entnommen werden. (größere Version)

Zwischen Atomen ist das abstoßende Potential bei kleinen Abständen eine Folge des Pauli-Prinzips für die Elektronenzustände. Bei Annäherung zweier Nukleonen mit sechs Quarks hat jedes Quark aber erheblich mehr Freiheitsgrade im niedrigsten Zustand (Bahndrehimpuls l=0): neben Spin (2 Zustände) noch eine Farbladung (3 Zustände) und Isospin (2 Zustände), zusammen also 12, auf die sich die sechs Quarks nach dem Pauli-Prinzip verteilen können.[1] Das Pauli-Prinzip ist hier nicht unmittelbar für die Abstoßung verantwortlich, die sich unterhalb etwa 0,8 fm bemerkbar macht. Der Grund liegt vielmehr in der starken Spin-Spin-Wechselwirkung der Quarks, die sich augenfällig darin ausdrückt, dass die Delta-Resonanz (mit parallelen Spins der drei Quarks) eine um etwa ein Drittel höhere Masse als das Proton hat. Stehen also die Spins der Quarks parallel zueinander, so nimmt die potentielle Energie des Systems zu. Dies gilt auch bei sich überlappenden Nukleonen, und zwar umso stärker, je geringer der Abstand der Nukleonen voneinander ist. Versuchen die Quarks durch Umkehrung des Spins ihre chromomagnetische Energie zu minimieren, gelingt dies nur durch Übergang in einen energetisch höheren Bahndrehimpulszustand (l=1).[2]

Mit noch größerem Abstand voneinander gelangen die Nukleonen in den anziehenden Teil der starken Wechselwirkung. Hierbei spielt weniger der Quark-Quark-Austausch (zwei Quarks sind gleichzeitig beiden beteiligten Nukleonen zugeordnet), den man in Analogie zur kovalenten Bindung erwartet, eine Rolle, als vielmehr der von farbneutralen Quark-Antiquark-Paaren (Mesonen) aus dem Seequark-Anteil der Nukleonwellenfunktion in der QCD.

Eine vollständige Beschreibung der Kernkraft aus der Quantenchromodynamik ist jedoch bisher nicht möglich.

Die starke Wechselwirkung im Gefüge einer möglicherweise einmal gefundenen Weltformel

Fundamentale Wechselwirkungen und ihre Beschreibungen
(Theorien in frühem Stadium der Entwicklung sind grau hinterlegt.)
Starke Wechselwirkung Elektromagnetische Wechselwirkung Schwache Wechselwirkung Gravitation
klassisch Elektrostatik & Magnetostatik,
Elektrodynamik
Newtonsches Gravitationsgesetz,
Allgemeine Relativitätstheorie
quanten-
theoretisch
Quanten­chromo­dynamik
(Standardmodell)
Quanten­elektrodynamik Fermi-Theorie Quanten­gravitation ?
Elektroschwache Wechselwirkung
(Standardmodell)
Große vereinheitlichte Theorie ?
Weltformel („Theory of Everything“) ?

Siehe auch

Literatur

  • Manfred Böhm, Ansgar Denner, Hans Joos: Gauge theories of the strong and electroweak interaction, Teubner-Verlag, Stuttgart 2001, ISBN 978-3-519-23045-8 (deutsches Original: Becher-Böhm-Joos, Eichtheorien der starken und elektroschwachen Wechselwirkung) – ein Standardwerk für die Theorie
  • Bogdan Povh, Klaus Rith, Christoph Scholz, Frank Zetsche Teilchen und Kerne, 8. Auflage, Springer Verlag 2009
  • Wolfgang Wild Kernkräfte und Kernstruktur, Teil 1,2, Physikalische Blätter 1977, S. 298, 356, Teil 1, Teil 2

Weblinks

Einzelnachweise

  1. Die Gesamtwellenfunktion ist antisymmetrisch und damit muss, da der Farbanteil immer antisymmetrisch ist (Gesamtfarbladung Null) bei symmetrischer Raum-Wellenfunktion (Bahndrehimpuls 0) der Spin-Isospin-Anteil auch symmetrisch sein
  2. Diskussion nach Povh, Rith, Schulze, Zetsche Teilchen und Kerne, S. 250f, dort nach Amand Fäßler


Dieser Artikel basiert (teilweise) auf dem Artikel Starke Wechselwirkung aus der freien Enzyklopädie Wikipedia und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar.