Strukturwissenschaften und Erbkrankheit: Unterschied zwischen den Seiten

Aus AnthroWiki
(Unterschied zwischen Seiten)
imported>Joachim Stiller
 
imported>Joachim Stiller
 
Zeile 1: Zeile 1:
Mit dem Begriff '''Strukturwissenschaften''' werden Wissensgebiete zusammengefasst, die allgemein funktional wirksame Formen betrachten und weder im Allgemeinen noch im Speziellen Gegenstände der Natur oder der sozialen Wirklichkeit zum Gegenstand haben. Diese Eingrenzung dient als Alternative zur Einteilung nach Sachgebiet, wie bei der Klassifizierung als [[Naturwissenschaft|Natur-]], [[Geisteswissenschaft|Geistes-]] oder [[Sozialwissenschaft]].
<gallery perrow="1" class="float-right" caption="Beispiele für Erbgänge" widths="200" heights="200">
Datei:Autosomal dominant - de.svg|Autosomal-dominanter Erbgang
Datei:Autosomal recessive - de.svg|Autosomal-rezessiver Erbgang
</gallery>


Oft ist mit der Verwendung des Terms ''Strukturwissenschaft'' der Anspruch verbunden, dass diese Wissensgebiete [[Metatheorie]]n zu den Sachgebieten darstellen oder sogar auf eine einzige Wissenschaft von Strukturen und Formen verweisen. Es besteht eine gewisse Verwandtschaft und Überschneidung im beanspruchten Umfang mit [[Formalwissenschaft]]en oder der klassisch-[[Rationalismus|rationalistischen]] Vorstellung einer ''reinen Vernunftwissenschaft''. Im Gedanken der Strukturwissenschaft ist dann die Idee einer  [[Einheitswissenschaft|Einheit der Wissenschaften]] mitgedacht, die eine Aufspaltung der Einzelwissenschaften überwindet, so dass sich am Ende nur die Strukturwissenschaft und die jeweilige Erfahrungswissenschaft, in der sie angewendet wird, gegenüberstehen. Dabei ist es ein Ziel der Strukturwissenschaften, die  Entstehung der in der [[Natur]] gegebenen Vielfalt organisierter und komplexer Strukturen auf einheitliche, abstrakte Grundgesetze zurückzuführen. Im Rahmen der Einteilung der Wissenschaften in [[Einzelwissenschaft]]en wird gelegentlich eine Segmentierung in Strukturwissenschaften, Naturwissenschaften, Humanwissenschaften (d.&nbsp;h. den Geistes- und Sozialwissenschaften), und [[Ingenieurswissenschaften]] vorgenommen.<ref>Helmut Balzert: ''Wissenschaftliches Arbeiten.'' 2008, S. 46.</ref> Oft wird der Begriff gefüllt, indem Grundlagen- und Teildisziplinen bestimmter etablierter Wissenschaften der Rang einer Strukturwissenschaft verliehen wird.
Als '''Erbkrankheit''' (oder ''genetisch bedingte Krankheit'') werden Erkrankungen und Besonderheiten bezeichnet, die entweder durch eine [[Mutation]] (Genvariante) in einem [[Gen]] ([[Monogenie|monogen]]) oder durch mehrere Mutationen (Genvarianten) in verschiedenen Genen ([[Polygenie|polygen]]) ausgelöst werden können und die zu bestimmten Erkrankungs[[Disposition (Medizin)|dispositionen]] führen. In diesem Zusammenhang spricht man auch von [[Monogenetische Erkrankung|monogenetischer]] bzw. [[Polygenie|polygenetischer Erkrankung]].


== Umfang ==
Im engeren Sinne zählt man jedoch nur jene Erkrankungen und Besonderheiten zu den Erbkrankheiten, die durch von Anfang an untypisch veränderte Gene ausgelöst und durch [[Vererbung (Biologie)|Vererbung]] von den Vorfahren auf ihre Nachkommen übertragen werden. Die früheste Methode zur Erforschung der Vererbungswege war die [[Stammbaumanalyse]] bei Familienstammbäumen, in denen beispielsweise die [[Hämophilie#Geschichte|Bluterkrankheit]] oder die [[Farbenblindheit]] usw. gehäuft auftraten.<ref>Ulrich Weber: ''Biologie Oberstufe. Gesamtband.'' Cornelsen, Berlin 2001, ISBN 3-464-04279-0, S. 180–182.</ref>


Zu den Strukturwissenschaften werden von den Befürwortern dieser Einteilung der Wissenschaft diverse Forschungsbereiche gezählt, von denen einige beispielhaft in der rechts stehenden Tabelle gelistet sind.
[[Syndrom]]e wie Formen von [[Trisomie]], bei denen sich nicht die übliche Zahl von 46 [[Chromosom]]en im menschlichen [[Genom]] findet, können somit genau genommen nicht als Erbkrankheit gezählt werden, da sie zumeist spontan erst bei der Zellteilung des [[Embryo]]s auftreten und daher selten von einem Elternteil geerbt werden.
{| class="wikitable float-right"
|
{| class="wikitable centered"
!Grundlagen der [[Mathematik]] !!Angewandte Mathematik
|-
|width="50%"|
* [[mathematische Logik]]
* [[Beweistheorie]]
* [[Rekursionstheorie]]
* [[Modelltheorie]]
* [[Mengenlehre]]
|valign="top" rowspan="3"|
* [[Dynamisches System|Dynamische Systeme]]
** [[Nichtlineare Dynamik]], [[Katastrophentheorie (Mathematik)|mathematische Katastrophentheorie]] und [[Chaosforschung]]
** [[Kontrolltheorie]]
**: (Regelungstechnik, mathematische Systemtheorie)
* [[Finanzmathematik]]
* [[Graphentheorie]]
* [[Informationstheorie]]
* [[Kryptographie]]
* [[Biomathematik|Mathematische Biologie]]
* [[Mathematische Chemie]]
* [[Mathematische Linguistik]]
* [[Mathematische Physik]]
* [[Numerik]]
* [[Operations Research]], [[Optimierung]]
* [[Spieltheorie]]
* [[Versicherungsmathematik]]
|-
!Reine Mathematik
|-
|
* [[Algebra]]
* [[Analysis]]
* [[Geometrie]] und [[Topologie (Mathematik)]]
* [[Stochastik]]
* [[Zahlentheorie]]
|-
![[Theoretische Informatik]]!!Allgemeine [[Systemtheorie]]
|-
|
* [[Automatentheorie]] und [[formale Sprache]]n
* [[Berechenbarkeitstheorie]]
* [[Komplexitätstheorie]]
|valign="top" rowspan="3"|
* [[Kybernetik]]
* [[Synergetik]]
* [[Selbstorganisation]]stheorie
* [[Komplexes System|Komplexe Systeme]]
* [[Netzwerkforschung]]
* [[Komplexes Netzwerk]]
* [[System Dynamics]]
* [[Systemtheorie (Ingenieurwissenschaften)|Ingenieurswissenschaftliche Systemtheorie]]
|}
|-
|<small>Zu den Strukturwissenschaften werden heutzutage tausende von Einzeldisziplinen gezählt.</small>
|}


Vergleichsweise neue Zweige, die sich etwa im Bereich zwischen der angewandten Mathematik und den klassischen Natur- und Ingenieurswissenschaften befinden, haben sich in den Anwendungsbereichen der Systemwissenschaften oder etwa der Kybernetik erschlossen.
== Verschiedene Formen ==
Erbkrankheiten folgen verschiedenen [[Erbgang (Biologie)|Erbgängen]] und sind mit unterschiedlichen Vererbungs-, Wiederholungs- und Erkrankungswahrscheinlichkeiten verbunden. Man unterscheidet autosomal-rezessive und [[Autosomal-dominanter Erbgang|autosomal-dominante]] von gonosomalen und mitochondrialen Erbgängen.


An russischen Universitäten gibt es explizit eigene Fakultäten für angewandte Mathematik und Kybernetik.<ref>Vgl. etwa http://cs.bsu.edu.az/en/content/faculty_of_applied_mathematics_and_cybernetics.</ref> Weiterhin beschreibt die Technische Universität Ilmenau ihren Studiengang Technische Kybernetik und Systemtheorie folgendermaßen: „Die Technische Kybernetik ist eine interdisziplinäre Wissenschaft. Sie ist zwischen den Ingenieurwissenschaften und der angewandten Mathematik angesiedelt und mit der Beschreibung, Analyse und Kontrolle von dynamischen Prozessen befasst. Kybernetische Methoden ermöglichen z.&nbsp;B. die automatische Navigation von Schiffen, lassen komplexe Vorgänge in Zellorganismen beschreiben oder helfen logistische Abläufe, wie Fahrpläne oder Energienetze, zu optimieren.“<ref>http://www.tu-ilmenau.de/studieninteressierte/studieren/bachelor/technische-kybernetik-und-systemtheorie/</ref>
=== Autosomal-rezessive Erbgänge ===
[[Datei:Autorecessive 01.png|mini|Der autosomal-rezessive Erbgang]]


{{Zitat|Heutzutage bilden die Strukturwissenschaften die Basiswissenschaften für das Verständnis komplexer Phänomene schlechthin. … Dass der Anteil der Strukturwissenschaften ständig zunimmt, kann man unter anderem daran erkennen, dass die Computersimulation zunehmend das klassische Experiment in den Naturwissenschaften verdrängt. … Tatsächlich scheinen die Strukturwissenschaften zu einem einheitlichen Wirklichkeitsverständnis, das heißt zu einem objektiven Sinnzusammenhang und einem objektiven Anschauungsganzen zu führen, das nunmehr alle Formen wissenschaftlicher Erkenntnis umfasst. Und es mag geradezu paradox erscheinen, dass es ausgerechnet die so facettenreiche Wissenschaft des Komplexen ist, die wieder zur Einheit des Wissens und damit zur Einheit der Wirklichkeit zurückführt.|Bernd-Olaf Küppers|Die Strukturwissenschaften  als  Bindeglied  zwischen Natur- und Geisteswissenschaften|ref=<ref>in: B.-O. Küppers  (Hrsg.), Die  Einheit  der  Wirklichkeit,  München  2000: S.89-105., [http://www.personal.uni-jena.de/~x7kube/download/pdf/Strukturwissenschaften.pdf online] (PDF; 206&nbsp;kB); S. 20–22</ref>}}
Die Besonderheit tritt nur dann in Erscheinung, wenn sich auf jeweils beiden [[Chromosom]]en eine Veränderung ([[Mutation]]) in beiden Kopien eines bestimmten [[Gen]]s findet, d.&nbsp;h., wenn der betreffende Mensch jeweils eine Veränderung von seinem biologischen Vater und eine von seiner biologischen Mutter geerbt hat. Die Eltern müssen dabei nicht betroffen sein, der [[Phänotyp]] tritt also nicht in jeder Generation auf. Die Mutation muss dabei nicht identisch sein. Führen zwei molekulargenetisch unterscheidbare Mutationen zu dem gleichen Funktionsverlust in einem Gen, so spricht man von ''[[Komplexe Heterozygotie|Compound Heterozygotie]]''. Beispiele für autosomal-rezessive Erbgänge sind [[Mukoviszidose]], [[Albinismus]] und [[Phenylketonurie]] (PKU) (Defekt der Phenylalaninhydroxylase).


== Entwicklung ==
Ursachen für scheinbare Abweichungen autosomal rezessiver Vererbung sind [[Pseudodominanz]], [[Heterogenie]], [[Isodisomie]] und das Nichteinrechnen von [[Heterozygot]]en mit gesunden Kindern. Typische Beispiele sind:
* [[Adrenogenitales Syndrom]] (AGS),
* [[Ahornsirupkrankheit]],
* [[Albinismus]],
* [[Alkaptonurie]],
* [[Alpha1-Antitrypsinmangel]],
* [[Galaktosämie]],
* [[Hereditäre Fruktoseintoleranz]]
* [[Hämochromatose]]
* [[Joubert-Syndrom]],
* [[Kretinismus]],
* [[Kurzripp-Polydaktylie-Syndrom]] (Typ I, II, III, IV),
* [[Laurence-Moon-Biedl-Bardet-Syndrom]] ([[LMBB-Syndrom]]),
* [[Lippen-Kiefer-Gaumenspalte]]
* [[Morbus Wilson]]
* [[Mukopolysaccharidose]]n (MPS),
* [[Mukoviszidose]] bzw. ''Zystische Fibrose'',
* [[Nephrotisches Syndrom|Nephrotisches Syndrom vom finnischen Typ]],
* [[Peters-Plus-Syndrom]],
* [[Phenylketonurie]] (PKU),
* [[Ribbing-Syndrom]],
* [[Thalassämie]] und
* [[Xeroderma pigmentosum]].
* [[Zystenniere#Autosomal-rezessive polyzystische Nierenerkrankung|Autosomal-rezessive polyzystische Nierenerkrankung (ARPKD)]]


=== Mathematik ===
=== Autosomal-dominante Erbgänge ===
[[Datei:Autodominant 01.png|mini|Der autosomal-dominante Erbgang]]


{{Zitat|Die beliebte Frage, ob Mathematik eine Natur- oder Geisteswissenschaft sei, geht von einer unvollständigen Einteilung aus. Sie ist eine Strukturwissenschaft.|[[Carl Friedrich von Weizsäcker]]|''Die Einheit der Natur''|ref=<ref>C. F. v. Weizsäcker: ''Die Einheit der Natur.'' 1971, S. 22.</ref>}}
Hier führt bereits ein verändertes [[Allel]] (Allele sind die einander jeweils und gleichzeitig gegensätzlich entsprechenden Gene eines [[diploid]]en Chromosomensatzes) auf einem der beiden homologen Chromosomen zur Merkmalsausprägung. Die genetische Information liegt auf einem der 44 [[Autosom]]en vor und wird unabhängig vom [[Genetisches Geschlecht|Geschlecht]] vererbt. Frauen und Männer sind also gleichermaßen betroffen. Der [[Phänotyp]] tritt in jeder Generation auf. Beispiele sind:
Der strukturwissenschaftliche Begriff der [[Struktur]] entstammt dem Bemühen um die Wende zum 20. Jahrhundert, eine gemeinsame [[Grundlagen der Mathematik|Grundlage für die gesamte Mathematik]] zu finden. Maßgebliche Schritte waren hierfür die Entwicklung der [[Naive Mengenlehre|naiven Mengenlehre]], der [[Formale Logik|formalen Logik]], das [[Hilbertprogramm]], die [[Gruppentheorie]] der Algebra und die Arbeiten der Gruppe [[Nicolas Bourbaki]].
* [[Achondroplasie]],
* [[Apert-Syndrom]],
* [[Brachydaktylie]],
* [[Chorea Huntington]] („Veitstanz“),
* [[Ehlers-Danlos-Syndrom]] (Typen I–IV, VII A/B, VIII),
* [[Engelmann-Syndrom]],
* [[Erythropoetische Protoporphyrie]],
* [[Faktor-V-Leiden-Mutation]]
* [[Familiäre Hypercholesterinämie]],
* [[Hereditäre motorisch-sensible Neuropathie|HMSN]] Typ I ([[Morbus Charcot-Marie-Tooth]]),
* [[Maligne Hyperthermie]],
* [[Marfan-Syndrom]],
* [[Multiple kartilaginäre Exostosen]]
* [[Myotone Dystrophie Typ I]],
* [[Neurofibromatose]] (Morbus Recklinghausen),
* [[Osteogenesis imperfecta]] (Typ I),
* [[Piebaldismus]],
* [[Polydaktylie]],
* [[Retinoblastom]],
* [[Ruvalcaba-Myhre-Smith-Syndrom]] und
* [[Sichelzellenanämie]].
* [[Zystenniere#Autosomal-dominante polyzystische Nierenerkrankung|Autosomal-dominante polyzystische Nierenerkrankung (ADPKD)]]


Die formale [[Prädikatenlogik]] baut auf der von [[Georg Cantor]] formalisierten Mengenlehre ([[naive Mengenlehre]]) auf. [[George Boole]]s ''An Investigation of the Laws of Thought'' verglich bereits die Verknüpfungsstrukturen des logischen Denkens mit der Zahlenalgebra und ihren Rechenarten. [[Gottlob Frege]] legte mit der „[[Begriffsschrift]]“ das erste rein formale axiomatische Logiksystem vor, mit dem er in den [[Grundgesetze der Arithmetik]] versuchte, die Mathematik auf rein logische Axiome zu gründen, indem er versuchte, den Begriff der Anzahl auf der Basis von Begriffsumfängen und Abbildungsrelationen zu definieren. Freges System ließ jedoch die Herleitung der [[Russellsche Antinomie|russellschen Antinomie]] zu. Diesem Problem wurde zum einen mit der [[Typentheorie]] begegnet, zum anderen durch Ergänzungen in der Axiomatik der Mengenlehre.
=== Gonosomale Erbgänge ===
[[Gonosom]]ale Erbkrankheiten, also solche, bei denen die Veränderung die Geschlechtschromosomen X bzw. Y betrifft, liegen in den meisten Fällen auf dem [[X-Chromosom]], da das [[Y-Chromosom]] weniger Gene enthält. Das X-Chromosom hat 155 Megabasen, das Y-Chromosom 59 Megabasen<ref>[http://www.ensembl.org/Homo_sapiens/Location/Genome Ensembl Datenbank], abgerufen am 11. Februar 2017.</ref> Am Beispiel der X-chromosomalen Vererbung werden folgende Besonderheiten deutlich:


Ausgehend von [[David Hilbert]] und Wilhelm Ackermann wurde umgekehrt eine [[Algebra]]isierung der Logik betrieben.<ref>Reiner Winter: ''Grundlagen der formalen Logik.'' 2001, S. 3–6.</ref> Für die Position des Formalismus entsprach etwa jede Menge, die formal den [[Peano-Axiome]]n genügt (ein Modell der Axiome darstellt), den natürlichen Zahlen.
==== X-chromosomal-rezessiv ====
Die [[Modelltheorie]] beschäftigt sich im Besonderen mit solchen Strukturen, die axiomatisierbaren Sprachen oder Theorien entsprechen. Ein Modell ist dabei eine mit gewissen Strukturen versehene Menge, auf die die Axiome des Systems zutreffen. Formal sind Modelle [[Struktur (erste Stufe)|Strukturen]] über einer [[Elementare Sprache|Elementaren Sprache]], in der die Axiome formuliert sind. In der [[Beweistheorie]] bildet das strukturelle Beweisverfahren eine wichtige Kalkül-Basis als Beweistheorie. Beweise werden üblicherweise als induktiv definierte [[Datenstruktur]]en dargestellt, wie Listen oder Bäume. Über die [[Berechenbarkeitstheorie]] (siehe auch [[Berechenbarkeit]]) bildet die formale Logik einen der historischen Ausgangspunkte der theoretischen Informatik.
<gallery perrow="2" class="float-right" caption="" widths="200" heights="200">
Datei:X-chromosomal-rezessive-Mutter.png|X-chromosomal-rezessiver Erbgang (Mutter ist Konduktor)
Datei:X-chromosomal-rezessive-Vater.png|X-chromosomal-rezessiver Erbgang (bei krankem Vater)
</gallery>


Mithilfe des abstrakten Gruppenbegriffs ließ sich die abstrakte [[algebraische Struktur]] definieren durch eine oder mehrere Grundmengen (von Objekten, Elementen oder Symbolen) und den Operationen, Relationen und [[Funktion (Mathematik)|Funktionen]] auf diesen Grundmengen. „So wurde es das unbestrittene Verdienst von [[Emmy Noether]], [[Emil Artin|[Emil] Artin]] und den Algebraikern ihrer Schule, wie Hasse, Krull, Schreier, van der Waerden, in den 1920er Jahren die Auffassungen von einer modernen Algebra als Theorie algebraischer Strukturen voll durchgesetzt zu haben.“<ref>Wußling, Hans: Vorlesungen zur Geschichte der Mathematik; 1998, S.281</ref> Diese Strukturen waren von der Entscheidung der Grundlagendebatte zwischen Platonikern, Formalisten und Intuitionisten letztlich unabhängig.
Mädchen/Frauen sind nur betroffen, wenn beide X-Chromosomen geschädigt sind, ansonsten sind sie nur Anlageträger ([[Konduktor]]en), d.&nbsp;h., sie können das veränderte X-Chromosom an ihre Kinder weitervererben, bilden selbst aber keinen entsprechenden Phänotyp aus. Mädchen/Frauen können vielfach die Veränderung auf einem X-Chromosom durch ihr zweites X-Chromosom ausgleichen, wenn es nicht verändert ist. Jungen/Männer sind dann betroffen, wenn sie das eine veränderte X-Chromosom von der phänotypisch gesunden Mutter, oder eines von beiden veränderten X-Chromosomen einer phänotypisch erkrankten Mutter vererbt bekommen, da Jungen/Männer ja ein X-Chromosom auf jeden Fall von der Mutter bekommen und auch nur dieses eine besitzen. Phänotypisch sind Jungen/Männer also häufiger betroffen, da Mädchen/Frauen den Defekt durch das andere X-Chromosom ausgleichen. Beispiele sind [[G6PD-Mangel|Glucose-6-Phosphat-Dehydrogenase-Mangel]] (G-6-PD-Mangel), [[Hämophilie]] A und B (Bluterkrankheit), [[Lesch-Nyhan-Syndrom]], [[Morbus Fabry]], [[Mukopolysaccharidose]] Typ II, [[Muskeldystrophie]] (Typ Duchenne, Typ Becker-Kiener), [[Norrie-Syndrom]], [[Retinitis pigmentosa]], [[Rot-Grün-Blindheit]], [[Septische Granulomatose]], [[X-SCID]] (severe combined immune deficiency) und [[Ornithin-Transcarbamylase]] (OTC)-Mangel<ref>J. E. Wraith: ''[http://adc.bmj.com/cgi/content/full/84/1/84 Ornithine carbamoyltransferase deficiency.]'' In: ''Archives of Disease in Childhood.'' Januar 2001, Band 84, Nr. 1, S. 84–88: ''Review.'' PMID 11124797.</ref> ([[Harnstoffzyklusdefekt]])


Bereits in Freges System können die Prädikate selbst zum Gegenstand der Prädikation durch Prädikate höherer Stufe werden (und so weiter). Auf dieser Basis können bereits große Bereiche der Mathematik in der mathematischen Logik ausgedrückt werden. Die Relationszeichen, Funktionszeichen oder Konstanten bilden dabei dann den Typ der Sprache, äquivalent zum Typ einer algebraischen Struktur. So bildete sich während der Grundlegungsdebatte in der Mathematik und Logik um 1940 ein „strukturelle[r] Standpunkt“ heraus, der Mathematik in Bezug zur Mathematikdidaktik zu einer Strukturwissenschaft erklärte, und ab 1955 didaktisch in Deutschland wirksam wurde.<ref>Köck, Michael: Mathematik – ein Produkt der Naturgeschichte?; 2011, S.31</ref>
==== X-chromosomal-dominant ====
<gallery perrow="2" class="float-right" caption="" widths="200" heights="200">
Datei:X-chromosomal-dominant-Vater.png|X-chromosomal-dominanter Erbgang (bei krankem Vater)
Datei:X-chromosomal-dominant-Mutter.png|X-chromosomal-dominanter Erbgang (bei kranker Mutter)
</gallery>


Die Gruppe [[Nicolas Bourbaki]] erklärte schließlich in einem 1950 veröffentlichten Artikel Strukturen zum geeignete Mittel, um die gesamte Einheit der Mathematik zu sichern.<ref>Bourbaki, Nicolas: The Architecture of Mathematics. Amer. Math. Monthly 67; 1950, S.221-232</ref>
Jungen/Männer sind zu 50 % betroffen, wenn ihre Mutter Trägerin eines kranken X-[[Chromosom]]s ist. Trägt eine Mutter dagegen 2 kranke X-Chromosomen, so sind alle Kinder betroffen. Mädchen/Frauen sind insgesamt häufiger betroffen, da die Wahrscheinlichkeit, ein verändertes X-Chromosom zu erhalten, bei zwei X-Chromosomen (eins vom Vater, eins von der Mutter) höher ist als bei Jungen/Männern (Eines von der Mutter). Beispiele sind [[Phosphatdiabetes|Familiäre phosphatämische Rachitis]] (auch ''idiopathisches Debré-de-Toni-Fanconi-Syndrom'' oder ''Vitamin-D-resistente [[Rachitis]]'' genannt), [[Rett-Syndrom]] und [[Oro-fazio-digitales Syndrom Typ 1]].


=== Informatik ===
=== Mitochondriale bzw. Extrachromosomale Erbgänge ===
Die Entwicklung der Theoretischen Informatik begann etwa in den 1930er Jahren. Als grundlegendes Konzept in der Informatik gilt der aus der Mathematik stammende Begriff des [[Algorithmus]], der eine aus endlich vielen Schritten bestehende Handlungsvorschrift zur Lösung eines mathematischen Problems darstellt. Mit dem Algorithmenbegriff verbunden ist das Konzept der [[Berechenbarkeit]], für das in der [[Berechenbarkeitstheorie]] verschiedene mathematische Formalisierungen und Analysemethoden entwickelt wurden. Auch innerhalb der Informatik werden auf formaler Ebene strukturelle Eigenschaften von Objektklassen erforscht, ohne zu berücksichtigen, welche konkreten Objekte sich dieser Struktur unterordnen und ob diese sich in der Realität überhaupt konstruieren lassen, wobei aber eine Forderung nach Konstruierbarkeit je nach Disziplin durchaus gestellt werden kann.
Etwa 0,1 Prozent der [[Desoxyribonukleinsäure|DNA]] einer menschlichen Zelle befinden sich nicht im Zellkern, sondern in den [[Mitochondrien]]. Da Eizellen im Gegensatz zu Spermien mehrere hunderttausend Mitochondrien besitzen, werden Mutationen in der Mitochondrien-DNA nur mütterlicherseits vererbt. Gleiches gilt für die [[Chloroplast]]en photosynthetisch aktiver Organismen.


Ein der klassischen Mathematik fremder Begriff ist derjenige der [[Datenstruktur]], der in der Informatik, neben dem des Algorithmus, von zentraler Bedeutung ist. Die Darstellung der Algorithmen, Datenstrukturen und Untersuchungen über Zeit und Platz, die für die Ausführung und Speicherung notwendig sind, ist ein eigener Beitrag der Theoretischen Informatik zu den Strukturwissenschaften.
Siehe auch [[Vererbung (Biologie)#Extrachromosomale Vererbung|Extrachromosomale Vererbung]]


Spezifische grundlegende Strukturen der Informatik sind im Bereich der Rechnerstrukturen u.&nbsp; A. die [[Von-Neumann-Architektur]] (seit 1945) bzw. sein Gegenteil, die Non-Von-Neumann-Architekturen (beispielsweise [[Parallelrechner]]).
== Diagnose und Behandlung ==
Bei Verdacht auf eine Erbkrankheit kann eine [[Humangenetik|humangenetische]] Untersuchung Klarheit verschaffen. Dabei werden die Chromosomen auf zahlenmäßige und strukturelle Veränderungen überprüft. Besteht dringender Verdacht auf einen bestimmten genetischen Defekt ist auch eine weitergehende, aufwändige Untersuchung einzelner Genkonstellationen möglich. Die Ergebnisse können dann bei der Risikoabschätzung bzgl. einer Vererbung hilfreich sein.


Die bis heute geltende Basis jeder strukturierten [[Programmierung]] sind die drei [[Kontrollstruktur]]en von Sequenz, Verzweigung und Schleife. Zur Visualisierung werden [[Programmablaufplan|Flussdiagramme]] oder auch [[Struktogramm]]e (seit 1972) verwendet.
[[Therapie|Therapeutisch]] kann bei einer vorliegenden Besonderheit des Erbguts mit den heutigen medizinischen Möglichkeiten nicht auf die Ursachen eingewirkt werden. Es werden daher meist Ratschläge in Bezug auf die Lebensweise, Aufklärung über Risikofaktoren und [[symptom]]atische Maßnahmen getroffen. Dies sind dann individuelle Entscheidungen, zumal es sich nicht immer um eine Krankheit, sondern oft um eine [[Disposition (Medizin)|Disposition]] handelt.


Weitere wichtige Impulse verdankt die Strukturwissenschaft den Themengebieten der [[Berechenbarkeitstheorie]], der Frage zur Entscheidbarkeit und der [[Komplexitätstheorie]]. Auch die Untersuchungen zur [[Automatentheorie]], insbesondere die der [[Zellulärer Automat|zellularen Automaten]], weisen einen bis heute progressiven Charakter nicht zuletzt auch im Bereich der naturwissenschaftlichen Erklärungsmodelle auf.
== Geschichte ==
Der erst seit dem 20. Jahrhundert in der Bedeutung ''genetische Krankheit'' verwendete Begriff der Erbkrankheit<ref>Werner Sohn: ''Erbkrankheiten.'' In: Werner E. Gerabek, Bernhard D. Haage, Gundolf Keil, Wolfgang Wegner (Hrsg.): ''Enzyklopädie Medizingeschichte.'' De Gruyter, Berlin/ New York 2005, ISBN 3-11-015714-4, S. 366 f.; hier: S. 366.</ref> wurde in der ersten Hälfte des [[20. Jahrhundert]]s auch häufig falsch verwendet, unter anderem für angebliche „Krankheiten“ wie „kriminelle Neigung“ oder „Asozialität“.<ref>Wolfgang Ayaß: ''[http://nbn-resolving.de/urn:nbn:de:hebis:34-2007013016913 „Asozialer Nachwuchs ist für die Volksgemeinschaft vollkommen unerwünscht“. Die Zwangssterilisationen von sozialen Außenseitern].'' In: Margret Hamm (Hrsg.): ''Lebensunwert - zerstörte Leben. Zwangssterilisation und „Euthanasie“.'' Verlag für akademische Schriften (VAS), Frankfurt am Main 2005, ISBN 3-88864-391-0, S. 111–119.</ref> Dieses Denken beeinflusste [[Sterilisation]]s-Programme und den [[Euthanasie]]-Gedanken und fand seine extreme Ausprägung im deutschen [[Nationalsozialismus]], war aber zum damaligen Zeitpunkt auch in vielen anderen Ländern wie den USA, England und Frankreich vorhanden. Heute werden nur noch solche Krankheiten als Erbkrankheiten bezeichnet, die möglichst klar abgrenzbar sind und mit sehr hoher Wahrscheinlichkeit auf Gendefekte zurückgehen.


=== Komplexitätsforschung und Systemtheorie ===
== Sonstige Erbkrankheiten und Besonderheiten ==
* [[Erbkrankheiten in endogamen Populationen]]


[[Datei:Ideal feedback model.svg|mini|strukturelles Feedback-Modell der Kybernetik]][[Carl Friedrich von Weizsäcker]] prägte 1971 einen erweiterten Begriff für die Strukturwissenschaften: „Als Strukturwissenschaften wird man nicht nur die reine und angewandte Mathematik bezeichnen, sondern das in seiner Gliederung noch nicht voll durchschaute Gebiet der Wissenschaften, die man mit Namen wie Systemanalyse, Informationstheorie, Kybernetik, Spieltheorie bezeichnet. Sie sind gleichsam die Mathematik zeitlicher Vorgänge, die durch menschliche Entscheidung, durch Planung, durch Strukturen, [] oder schließlich durch Zufall gesteuert werden. Sie sind also Strukturtheorien zeitlicher Veränderung. Ihr wichtigstes praktisches Hilfsmittel ist der Computer, dessen Theorie selbst eine der Strukturwissenschaften ist. Wer in einem Lande den Fortschritt der Wissenschaft fördern will, muss diese Wissenschaften vordringlich fördern, denn sie bezeichnen gleichsam eine neue Bewusstseinsstufe.“<ref>C. F. v. Weizsäcker: Die Einheit der Natur; 1971, S.22</ref>
* [[Mayer-Rokitansky-Küster-Hauser-Syndrom]]
* [[Spastische Spinalparalyse|Hereditäre Spastische Spinalparalyse (HSP/FSP)]]
* [[Hypophosphatasie]]
* [[Ichthyose]]
* [[Katzenaugen-Syndrom]]
* [[Retinitis pigmentosa]], [[Usher-Syndrom]]
* [[Tuberöse Sklerose]]
* [[Wolf-Hirschhorn-Syndrom]]


In den 1970er und 1980er Jahren erlebten dann mit der [[Synergetik]], der Theorie der [[Selbstorganisation]] und der [[Chaostheorie]] weitere Gebiete, die den Strukturwissenschaften zugerechnet werden können, einen rasanten Aufstieg. Im Rahmen der [[Komplexitätsforschung]] spielt dabei der Begriff des [[System]]s eine zentrale Rolle. Systeme organisieren und erhalten sich zunächst durch Strukturen. Die Struktur bezeichnet das Muster der Systemelemente und ihrer Beziehungsgeflechte, durch die ein System entsteht, funktioniert und sich erhält. Unter der Struktur eines Systems versteht man somit die Gesamtheit der Elemente eines Systems, ihre Funktion und ihre Wechselbeziehungen. Doch in der [[Systemtheorie]] bedingen sich [[Struktur (Systemtheorie)|Systemstruktur]], Systemverhalten und Systementwicklung gegenseitig. Daher werden innerhalb der Systemtheorie zusätzlich zur Struktur noch weitere Axiome eingeführt, welche die Systemgrenzen (die Unterscheidung System/Umwelt), vor allem aber die System-Attribute wie Stabilität, Dynamik, Linearität u.&nbsp; A. beinhalten. Weiterhin ist es für ein System konstituierend, dass die jeweiligen Systemelemente eine Systemfunktion (Systemzweck, Systemziel) erfüllen und dabei eine funktionale Differenzierung aufweisen. Die ersten formalisierten Systemtheorien wurden etwa um 1950 entwickelt. Die Anwendung solcher Modelltheorien ermöglicht die Simulation komplexer Vorgänge und wurde daher in vielen Einzelwissenschaften angestrebt, vor allem aber in der [[Biologie]] der 1970er und 1980er Jahre.
== Genetisch bedingte Disposition ==
Diverse Erkrankungen, [[Behinderung]]en und Besonderheiten sind nicht im Sinne einer klassischen Erbkrankheit erblich, sondern ihr Auftreten kann durch eine (mitunter familiäre) genetische Erkrankungs[[Disposition (Medizin)|disposition]] (Veranlagung, Anfälligkeit) bedingt sein. Hierzu zählen z. B.:


{{Zitat|Die Strukturwissenschaften … sind heute mächtige Instrumente zur Erforschung der komplexen Strukturen der Wirklichkeit. Ihre Gliederung erfolgt nach den gegenstandsübergreifenden Ordnungs- und Funktionsmerkmalen, welche die Wirklichkeit strukturieren, und die wir mit Oberbegriffen wie System, Organisation, Selbststeuerung, Information und dergleichen beschreiben. Neben den bereits als klassisch einzustufenden Disziplinen der Kybernetik, Spieltheorie, Informationstheorie und Systemtheorie haben die Strukturwissenschaften so wichtige Wissenschaftszweige wie Synergetik, Netzwerktheorie, Komplexitätstheorie, Semiotik, Chaostheorie, Katastrophentheorie, Theorie der Fraktale, Entscheidungstheorie und die Theorie der Selbstorganisation hervorgebracht. Auch die von mir anvisierte Theorie der Randbedingungen mag sich eines Tages zu einer eigenständigen Strukturwissenschaft weiterentwickeln.|[[Bernd-Olaf Küppers]]|Nur Wissen kann Wissen beherrschen|ref=<ref>Bernd-Olaf Küppers: ''Nur Wissen kann Wissen beherrschen'' 2008, S. 314</ref>}}
* [[Adipositas]]
 
* [[Allergie]]n, diverse
== Idee, Formalisierung und Beispiele mathematischer Strukturen ==
* [[Alzheimer-Krankheit]]
 
* [[Autoimmunerkrankung]]en
=== Zum Begriff der mathematischen Struktur ===
* [[Bipolare Störung]]
 
* [[Bluthochdruck]]
Zunächst bildete sich die "Auffassung von einer modernen Algebra als Theorie algebraischer Strukturen.",<ref>Wußling, Hans: Vorlesungen zur Geschichte der Mathematik 1998, S. 281</ref> welche auch heute noch oftmals als Strukturmathematik gelehrt wird. Dann entwickelte die Bourbakigruppe die gesamte Mathematik als "Lehre von den Strukturen"<ref>Wußling, Hans: Vorlesungen zur Geschichte der Mathematik 1998, S. 283</ref> im Sinne einer umfassenden Strukturwissenschaft. Der Begriff einer [[Mathematische Struktur|mathematischen Struktur]] hat jedoch nur noch bedingt etwas mit dem umgangssprachlichen Strukturbegriff zu tun. Die Mathematik formuliert diesen Begriff im Rahmen ihrer Formalisierung weitaus präziser. Die Hierarchie mathematischer Strukturen enthält beispielsweise die [[Algebraische Struktur|algebraischen Strukturen]] und die [[Topologische Struktur|topologischen Strukturen]].
* [[Creutzfeldt-Jakob-Krankheit]]
 
* [[Depression]]
Als Basis jeder mathematischen Struktur dient eine Menge M, deren Elemente zunächst in keinerlei Beziehung zueinander stehen, beispielsweise die Menge M = {1,2,3,4,5}, wobei die Elemente nicht notwendigerweise Zahlen sind. Nun wird dieser Menge M, die Trägermenge genannt wird, eine Struktur S aufgeprägt. Eine mathematische Struktur ist demnach mit (M,S) als geordnetes Paar für das System "die Menge M versehen mit der Struktur S" darstellbar. Dazu kann man dann zum Beispiel eine Ordnungsrelation verwenden, die zeigt, welche Elemente mit welchen anderen in Beziehung stehen, oder welche isoliert bleiben. Die Menge M trägt dann eine bestimmte Struktur S.
* [[Diabetes mellitus]]
 
* [[Großzehenabweichung]] ([[Hallux valgus]])
Die formale Definition einer mathematischen Struktur lautet:
* [[Haarausfall]]
: Eine Struktur ist ein 4-Tupel aus einer Menge A,  sowie einer [[Familie (Mathematik)|Familie]] von Grundrelationen I,  einer von Grundfunktionen J und einer von Konstanten K.
* [[Herzfehler]]
 
* [[Herzinfarkt]]
I, J und K können dabei auch [[Leere Menge|leer]] oder [[unendlich]] sein. Eine Struktur ohne I, J, und K ist dann trivialer Weise wieder die Trägermenge selbst. Reine Mengen von Relationen ohne zugehörige Mengen sind demnach nicht als mathematische Strukturen definiert, sondern sind lediglich als elementare Strukturbausteine separat analysierbar.
* [[Krebs (Medizin)|Krebserkrankungen]] diverse (siehe [http://www.bundesaerztekammer.de/page.asp?his=0.7.45.3260 Richtlinien zur Diagnostik der genetischen Disposition für Krebserkrankungen] auf der Website der Bundesärztekammer)
 
* [[Laktoseintoleranz]]
=== Komplexe Strukturen und Systemwissenschaften ===
* [[maligne Hyperthermie]]
 
* [[Migräne]]
Relativ junge Zweige der Strukturwissenschaften befassen sich heutzutage mit komplexen und hyperkomplexen Strukturen. Das Interesse an diesen Strukturen wurde jedoch primär nicht von dem Wunsch nach neuen mathematischen Modellen, sondern von dem Wunsch, natürliche Strukturen zu verstehen, motiviert. Derzeit sind daher viele entsprechende Gebiete auch quasi „zwischen“ der angewandten Mathematik und den traditionellen Natur- und Ingenieurswissenschaften angesiedelt. Manche Gebiete sind inzwischen recht gut-, und andere eher semi-formalisiert worden. Als Beispiele kann man dazu Teile der Systemwissenschaften ansehen.
* [[Multiple Sklerose]] (MS)
 
* [[Osteoporose]]
== Bezug zu Natur-, Geistes- und Sozialwissenschaften ==
* [[Parkinson-Krankheit]]
 
* [[Psoriasis]]
=== Naturwissenschaften ===
* [[Rheuma]]
 
* [[Schizophrenie]]
Abstrahierende mathematische Modellbildungen findet man heutzutage zudem in jedem Zweig der Naturwissenschaft, so dass es sinnvoll erscheinen kann, diese als Strukturwissenschaften zu einem allgemeinen Bestandteil der [[Methodik]] zu machen. Für die [[Physik]] beispielsweise kommt es dann aber darauf an, aus allgemeinstmöglichen Strukturen diejenigen herauszufischen, die für die Beschreibung von experimentellen Vorgängen benötigt werden. Aus der jeweiligen Struktur können dann mathematische Schlüsse gezogen werden, die überprüfbaren Folgen für den Untersuchungsgegenstand entsprechen.
* [[Schlaganfall]]
 
* [[Gehörlosigkeit|Taubheit]]
Aus Sicht der [[Differentialgeometrie]] handelt es sich bei physikalischen Theorien um differenzierbare [[Mannigfaltigkeit]]en mit endlicher Dimensionszahl. Selbst der [[Phasenraum]] ist mathematisch gesehen eine spezielle Mannigfaltigkeit. Diese Erkenntnis gestattet dann Untersuchungen wie den Unterschied zwischen integrablen und nichtintegrablen dynamischen Systemen, und dies wird seit einigen Jahren inzwischen wieder in Form der [[Chaosforschung|Chaostheorie]] näher untersucht.
* Formen der [[Trisomie]] ([[Disposition (Medizin)|Disposition]] zur Entstehung einer Translokations-Trisomie bei Nachkommen beim Vorliegen einer „[[Translokation (Genetik)|Balancierten Translokation]]des entsprechenden Chromosoms bei Eltern ohne die jeweilige Form von Trisomie)
 
* [[Vitiligo]]
Weiterhin ist der Begriff der Gruppe in der modernen Physik außerordentlich wichtig geworden. Die [[Gruppentheorie]] stellt die mathematischen Hilfsmittel zur Verfügung, mit denen Symmetrien untersucht werden können. Ein [[physikalisches System]] heißt symmetrisch bezüglich einer Transformation, wenn es sich durch die Anwendung der Transformation nicht ändert. Symmetrien haben insbesondere im Rahmen des [[Noether-Theorem]]s (formuliert 1918 von [[Emmy Noether]]) eine so große Bedeutung, weil sie [[Zeitumkehr (Physik)|Invarianzen]] zur Folge haben und damit Erhaltungsgrößen.
 
Auch die [[Chemie]] lässt sich als Anwendungsfall für die Strukturwissenschaften, seit sich ab 1865 die Strukturtheorie (in Anlehnung an [[Friedrich August Kekulé]]) in der Chemie durchsetzte. Demnach erklären sich chemische Eigenschaften aus der inneren Struktur der Moleküle (eine wichtige Anwendung in der Chemie ist daher das Aufstellen von [[Strukturformel]]n). Damit wurde auch die Basis für eine besondere Nähe zur Physik geschaffen, die es ermöglichte, die chemischen Bindungen als Verbindungsfähigkeiten von Atomen zu deuten. Insofern die Chemie die [[Kovalente Bindung|Bindungen von Atomen]] durch ihre äußere Elektronenhülle untersucht, die innerhalb von chemischen Bindungen aufgrund ihrer atomaren und molekularen Struktur ganz unterschiedliche Bindungsstärken und -arten realisieren können, beschäftigt sie sich mit gegebenen Strukturen innerhalb der Natur.<ref>Brock, William, 1992; Viewegs Geschichte der Chemie, S. 163</ref>
 
Innerhalb der [[Biologie]] beschäftigt sich speziell die [[Strukturbiologie]] mit dem Aufbau hierarchisch organisierten Strukturen von Lebewesen, angefangen von [[Makromolekül]]en zu [[Zelle (Biologie)|Zellen]], [[Organ (Biologie)|Organen]], [[Organismus|Organismen]], [[Biozönose]]n und [[Biosphäre]]n. Sowohl die einzelnen Bausteine von Lebewesen, als auch die Individuen innerhalb von [[Population (Biologie)|Populationen]] oder anderer Lebensgemeinschaften stehen dabei in einem relationalen Austausch miteinander und mit der physikalisch-chemischen Umwelt.
 
In diesem Zusammenhang ist vor allem die Frage von belang, inwiefern bestimmte Strukturen Träger [[Emergenz|emergenter]] Eigenschaften sind. Während die Strukturbetrachtung also einerseits den Übergang zwischen physikalischen Grundkräften, chemischen Verbindungen und organischem Leben zu beleuchten verspricht, existieren andererseits aber auch systemwissenschaftliche Ansätze, die ebenfalls strukturalistisch verstanden werden können.
 
[[Systemphysik]] wird dabei beispielsweise im Rahmen der Erforschung der Physik von komplexen Systemen am Max-Planck-Institut für Physik komplexer Systeme betrieben.<ref>[http://www.mpipks-dresden.mpg.de/ Homepage des Max-Planck-Institut für Physik komplexer Systeme]</ref> Erforscht werden dabei Bereiche der nichtlinearen Systemdynamik, die physikalischen Grundlagen liefern dabei oft die Modelle der [[Statistische Physik|statistischen Physik]].
 
Die [[Systembiologie]] ist ein Zweig der Biowissenschaften, der versucht, biologische Organismen in ihrer Gesamtheit zu verstehen. Das Ziel ist, ein integriertes Bild aller regulatorischen Prozesse über alle Ebenen, vom [[Genom]] über das [[Proteom]], zu den Organellen bis hin zum Verhalten und zur Biomechanik des Gesamtorganismus zu bekommen. Wesentliche Methoden zu diesem Zweck stammen aus der [[Systemtheorie]] und ihren Teilgebieten. Da aber die mathematisch-analytische Seite der Systembiologie nicht perfekt ist, kommen als Forschungsmethoden häufig Computersimulationen und Heuristiken zum Einsatz. Versuche zur mathematischen Formalisierung von Leben findet man u. A. bei [[Robert Rosen]], der im Rahmen seiner relationalen Biologie als Hauptmerkmale von Lebewesen den [[Stoffwechsel|Metabolismus]] und die Reparatur bzw. die [[Replikation]] beschreibt.<ref>Rosen, Robert; 1991, Life Itself: ''A Comprehensive Inquiry into the Nature, Origin, and Fabrication of Life'', Columbia University Press</ref>
 
Beispiele für die integrativen Leistungen der Strukturwissenschaften, die Naturwissenschaften dahingehend zu unterstützen, die Entstehung von organisierten Strukturen in der Natur zu beschreiben, sind die Forschungsergebnisse von [[Manfred Eigen]], welche ihren Ausgangspunkt in der Molekularbiologie nahmen, sowie die strukturwissenschaftlichen Ergebnisse von Illya Prigogine und Herman Haken, welche mit Überlegungen zur Thermodynamik begannen. Durch das  Paradigma der [[Selbstorganisation]] ([[Ilya Prigogine]]) und der [[Synergetik]] ([[Hermann Haken (Physiker)|Hermann Haken]]) erschien es möglich, die biologische Evolution als Evolution von Strukturen an die Physik anzuschließen.<ref>Glandsdorff, Prigogine; 1971: Thermodynamics of Structure, Stability and Fluctuations</ref><ref>Haken, Hermann; 1978: Synergetics, Nonequilibrium Phase Transitions and Selforganisation in Physics, Chemistry and Biologie</ref> Zuvor schien der  2. Hauptsatzes der [[Thermodynamik]], der eine Zunahme der [[Entropie (Thermodynamik)|Entropie]] voraussagt, einer spontanen Entstehung von Strukturen zu widersprechen. Ausgangspunkt der Betrachtungen von Haken zur Synergetik war daher die Frage, warum sich im Universum komplexe Strukturen entwickeln konnten, wenn allein der zweite Hauptsatz der Thermodynamik gilt. Er schreibt dazu:
{{Zitat|ref=<ref>Haken, Hermann; 1995, Erfolgsgeheimnisse der Natur, S. 12</ref>|Die Physik nimmt für sich in Anspruch, die grundlegende Naturwissenschaft schlechthin zu sein. Doch hätte man früher einen Physiker gefragt, ob beispielsweise die Entstehung des Lebens mit den Grundgesetzen der Physik in Einklang zu bringen sei, so hätte die ehrliche Antwort Nein lauten müssen. Nach den Grundgesetzen der Wärmelehre müsste die Unordnung der Welt immer mehr zunehmen. Alle geregelten Funktionsabläufe müssten langfristig aufhören, alle Ordnung zerfallen. Der einzige Ausweg, den viele Physiker sahen war, die Entstehung von Ordnungszuständen in der Natur als riesige Schwankungserscheinung zu betrachten, die nach den Regeln der Wahrscheinlichkeitstheorie überdies beliebig unwahrscheinlich sein sollte. Eine wahrhaft absurde Idee, aber wie es schien, im Rahmen der sog. Statistischen Physik die einzig akzeptable. War die Physik damit in eine Sackgasse geraten, indem sie behauptete, biologische Vorgänge beruhten auf physikalischen Gesetzen, aber die Entstehung des Lebens selbst würde den physikalischen Gesetzen widersprechen? Die Ergebnisse der Synergetik setzen uns instand, die Grenzen der Thermodynamik aufzudecken und klassische Fehlinterpretationen nachzuweisen.|Hermann Haken| Erfolgsgeheimnisse der Natur}}
 
=== Geistes- und Sozialwissenschaften ===
 
In der [[Philosophie]] machen vor allem die Denkrichtungen des [[Strukturalismus]] und die des [[Strukturenrealismus]] von strukturwissenschaftlichen Grundlagen Gebrauch. Strukturalismus ist dabei ein Sammelbegriff für interdisziplinäre Methoden und Forschungsprogramme, die Strukturen und Beziehungsgefüge in den weitgehend unbewusst funktionierenden Mechanismen kultureller Symbolsysteme untersuchen. Der Strukturalismus behauptet einen logischen Vorrang des Ganzen gegenüber den Teilen und versucht einen internen Zusammenhang von Phänomenen als Struktur zu fassen. Der philosophische Bereich des Strukturenrealismus stellt in seiner [[Erkenntnistheorie|epistemischen]] Variante die Theorie auf, dass alle wissenschaftliche Theorien über Strukturen in der Welt referieren, die [[ontisch]]e Variante behauptet, dass die Welt lediglich aus Strukturen bestehe und untersucht die Möglichkeiten der Existenz und der Entstehung von Relationen und (physikalischen) Objekten, bzw. fragt auch, ob es vielleicht auch nur Relationen ohne eigene Objektträger geben kann.
 
Die zentrale strukturwissenschaftliche Theorie innerhalb der [[Philologie]] stellt die [[Sprachwissenschaft|Linguistik]] bzw. die Sprachwissenschaft dar. Aus Sicht der Strukturwissenschaften handelt es sich hierbei um ein Teilgebiet der [[Semiotik]]. Von Sprachwissenschaftlern wird jedoch auch teilweise die Meinung vertreten, dass sich die Linguistik von diesem Teilgebiet aus bereits zu einer eigenständigen Strukturwissenschaft entwickelt habe. Unter dem strukturwissenschaftlichen Aspekt betrachtet geht Linguistik davon aus, dass ihr Objekt, die [[Sprache]], strukturiert ist. Sie entwickelt dazu methodische Verfahren, diese Strukturen aufzudecken und konstruiert Theorien, die diese Strukturen abbilden sollen.
 
In der [[Soziologie]] zählt vor allem die [[soziologische Systemtheorie]] von [[Niklas Luhmann]] als strukturwissenschaftliches Theoriegebäude, welches wiederum auf die Überlegungen des [[Strukturfunktionalismus]] und des Systemfunktionalismus von [[Talcott Parsons]] zurückgeht. Zur strukturellen und funktionalen Analyse sozialer Systeme entwickelte Parsons das [[AGIL-Schema]], das die für die Strukturerhaltung notwendigen Funktionen systematisiert. Die [[Systemtheorie (Luhmann)|Systemtheorie nach Niklas Luhmann]] ist eine philosophisch-soziologische Kommunikationstheorie mit universalem Anspruch, mit der die Gesellschaft als komplexes System von Kommunikationen beschrieben und erklärt werden soll. Kommunikationen sind dabei die Operationen, die diverse soziale Systeme der Gesellschaft entstehen lassen, vergehen lassen, erhalten, beenden, ausdifferenzieren, interpenetrieren und durch [[strukturelle Kopplung]] verbinden. Nach Luhmann sind soziale Systeme sinnverarbeitende Systeme. "Sinn" ist nach Luhmann die Bezeichnung für die Art und Weise, in der soziale (und psychische) Systeme Komplexität reduzieren. Die Grenze eines sozialen Systems markiert somit ein Komplexitätsgefälle von der Umwelt zum sozialen System. Soziale Systeme sind die komplexesten Systeme, die Systemtheorien behandeln können. In einem sozialen System entsteht durch die Reduktion von Komplexität im Vergleich zur Umwelt eine höhere Ordnung mit weniger Möglichkeiten. Durch die Reduktion von Komplexität vermitteln soziale Systeme zwischen der unbestimmten Weltkomplexität und der Komplexitätsverarbeitungskapazität psychischer Systeme.
 
Die [[Gestaltpsychologie]] der Leipziger Schule, eine von [[Felix Krueger]] zu Beginn des 20. Jahrhunderts begründete Richtung, die sich als Gegenpol zur mechanisch-materialistischen [[Psychophysik]] verstand. Einen eher von den Grundlagen der Informatik getriebenen Zugang zur Psychologie findet man beim [[Konstruktivismus (Lernpsychologie)|Konstruktivismus]].


== Siehe auch ==
== Siehe auch ==
* {{WikipediaDE|Strukturwissenschaft}}
* {{WikipediaDE|Kategorie:Genetische Störung}}
* {{WikipediaDE|Kategorie:Erbkrankheit}}
* {{WikipediaDE|Erbkrankheit}}
* {{WikipediaDE|Liste von Erbkrankheiten}}
* {{WikipediaDE|Genetik}}
* {{WikipediaDE|Erbliche Tumorerkrankungen}}
* {{WikipediaDE|Pränataldiagnostik}}
* {{WikipediaDE|Präimplantationsdiagnostik}}
* {{WikipediaDE|Kategorie:Erbkrankheit des Hundes}}  


== Weblinks ==
== Weblinks ==
{{Wikibooks|Klinische Humangenetik}}
{{Wiktionary}}
{{Wiktionary}}
* [http://www.frege.uni-jena.de/ Homepage des Frege Centre for Structural Sciences] an der Friedrich-Schiller-Universität Jena
* [http://www.mallig.eduvinet.de/bio/Repetito/Banaly1.html Einführung in die Stammbaumanalyse]
* [http://www.structural-science.net/ Competence Center for Pure and Applied Structural Sciences]
* [http://www.genome.gov/10005911 Human genetics: A Resource For Teachers] (englisch)


== Einzelnachweise ==
== Einzelnachweise ==
<references />
<references />


[[Kategorie:Formalwissenschaften]]
{{Gesundheitshinweis}}
[[Kategorie:Strukturwissenschaften|!]]
{{Normdaten|TYP=s|GND=4015106-2}}
 
[[Kategorie:Genetische Störung]]
[[Kategorie:Erbkrankheit|!]]
[[Kategorie:Humangenetik]]
[[Kategorie:Behinderungsart]]
[[Kategorie:Fehlbildung]]
[[Kategorie:Krankheit]]


{{Wikipedia}}
{{Wikipedia}}

Version vom 22. Mai 2018, 08:29 Uhr

Als Erbkrankheit (oder genetisch bedingte Krankheit) werden Erkrankungen und Besonderheiten bezeichnet, die entweder durch eine Mutation (Genvariante) in einem Gen (monogen) oder durch mehrere Mutationen (Genvarianten) in verschiedenen Genen (polygen) ausgelöst werden können und die zu bestimmten Erkrankungsdispositionen führen. In diesem Zusammenhang spricht man auch von monogenetischer bzw. polygenetischer Erkrankung.

Im engeren Sinne zählt man jedoch nur jene Erkrankungen und Besonderheiten zu den Erbkrankheiten, die durch von Anfang an untypisch veränderte Gene ausgelöst und durch Vererbung von den Vorfahren auf ihre Nachkommen übertragen werden. Die früheste Methode zur Erforschung der Vererbungswege war die Stammbaumanalyse bei Familienstammbäumen, in denen beispielsweise die Bluterkrankheit oder die Farbenblindheit usw. gehäuft auftraten.[1]

Syndrome wie Formen von Trisomie, bei denen sich nicht die übliche Zahl von 46 Chromosomen im menschlichen Genom findet, können somit genau genommen nicht als Erbkrankheit gezählt werden, da sie zumeist spontan erst bei der Zellteilung des Embryos auftreten und daher selten von einem Elternteil geerbt werden.

Verschiedene Formen

Erbkrankheiten folgen verschiedenen Erbgängen und sind mit unterschiedlichen Vererbungs-, Wiederholungs- und Erkrankungswahrscheinlichkeiten verbunden. Man unterscheidet autosomal-rezessive und autosomal-dominante von gonosomalen und mitochondrialen Erbgängen.

Autosomal-rezessive Erbgänge

Der autosomal-rezessive Erbgang

Die Besonderheit tritt nur dann in Erscheinung, wenn sich auf jeweils beiden Chromosomen eine Veränderung (Mutation) in beiden Kopien eines bestimmten Gens findet, d. h., wenn der betreffende Mensch jeweils eine Veränderung von seinem biologischen Vater und eine von seiner biologischen Mutter geerbt hat. Die Eltern müssen dabei nicht betroffen sein, der Phänotyp tritt also nicht in jeder Generation auf. Die Mutation muss dabei nicht identisch sein. Führen zwei molekulargenetisch unterscheidbare Mutationen zu dem gleichen Funktionsverlust in einem Gen, so spricht man von Compound Heterozygotie. Beispiele für autosomal-rezessive Erbgänge sind Mukoviszidose, Albinismus und Phenylketonurie (PKU) (Defekt der Phenylalaninhydroxylase).

Ursachen für scheinbare Abweichungen autosomal rezessiver Vererbung sind Pseudodominanz, Heterogenie, Isodisomie und das Nichteinrechnen von Heterozygoten mit gesunden Kindern. Typische Beispiele sind:

Autosomal-dominante Erbgänge

Der autosomal-dominante Erbgang

Hier führt bereits ein verändertes Allel (Allele sind die einander jeweils und gleichzeitig gegensätzlich entsprechenden Gene eines diploiden Chromosomensatzes) auf einem der beiden homologen Chromosomen zur Merkmalsausprägung. Die genetische Information liegt auf einem der 44 Autosomen vor und wird unabhängig vom Geschlecht vererbt. Frauen und Männer sind also gleichermaßen betroffen. Der Phänotyp tritt in jeder Generation auf. Beispiele sind:

Gonosomale Erbgänge

Gonosomale Erbkrankheiten, also solche, bei denen die Veränderung die Geschlechtschromosomen X bzw. Y betrifft, liegen in den meisten Fällen auf dem X-Chromosom, da das Y-Chromosom weniger Gene enthält. Das X-Chromosom hat 155 Megabasen, das Y-Chromosom 59 Megabasen[2] Am Beispiel der X-chromosomalen Vererbung werden folgende Besonderheiten deutlich:

X-chromosomal-rezessiv

Mädchen/Frauen sind nur betroffen, wenn beide X-Chromosomen geschädigt sind, ansonsten sind sie nur Anlageträger (Konduktoren), d. h., sie können das veränderte X-Chromosom an ihre Kinder weitervererben, bilden selbst aber keinen entsprechenden Phänotyp aus. Mädchen/Frauen können vielfach die Veränderung auf einem X-Chromosom durch ihr zweites X-Chromosom ausgleichen, wenn es nicht verändert ist. Jungen/Männer sind dann betroffen, wenn sie das eine veränderte X-Chromosom von der phänotypisch gesunden Mutter, oder eines von beiden veränderten X-Chromosomen einer phänotypisch erkrankten Mutter vererbt bekommen, da Jungen/Männer ja ein X-Chromosom auf jeden Fall von der Mutter bekommen und auch nur dieses eine besitzen. Phänotypisch sind Jungen/Männer also häufiger betroffen, da Mädchen/Frauen den Defekt durch das andere X-Chromosom ausgleichen. Beispiele sind Glucose-6-Phosphat-Dehydrogenase-Mangel (G-6-PD-Mangel), Hämophilie A und B (Bluterkrankheit), Lesch-Nyhan-Syndrom, Morbus Fabry, Mukopolysaccharidose Typ II, Muskeldystrophie (Typ Duchenne, Typ Becker-Kiener), Norrie-Syndrom, Retinitis pigmentosa, Rot-Grün-Blindheit, Septische Granulomatose, X-SCID (severe combined immune deficiency) und Ornithin-Transcarbamylase (OTC)-Mangel[3] (Harnstoffzyklusdefekt)

X-chromosomal-dominant

Jungen/Männer sind zu 50 % betroffen, wenn ihre Mutter Trägerin eines kranken X-Chromosoms ist. Trägt eine Mutter dagegen 2 kranke X-Chromosomen, so sind alle Kinder betroffen. Mädchen/Frauen sind insgesamt häufiger betroffen, da die Wahrscheinlichkeit, ein verändertes X-Chromosom zu erhalten, bei zwei X-Chromosomen (eins vom Vater, eins von der Mutter) höher ist als bei Jungen/Männern (Eines von der Mutter). Beispiele sind Familiäre phosphatämische Rachitis (auch idiopathisches Debré-de-Toni-Fanconi-Syndrom oder Vitamin-D-resistente Rachitis genannt), Rett-Syndrom und Oro-fazio-digitales Syndrom Typ 1.

Mitochondriale bzw. Extrachromosomale Erbgänge

Etwa 0,1 Prozent der DNA einer menschlichen Zelle befinden sich nicht im Zellkern, sondern in den Mitochondrien. Da Eizellen im Gegensatz zu Spermien mehrere hunderttausend Mitochondrien besitzen, werden Mutationen in der Mitochondrien-DNA nur mütterlicherseits vererbt. Gleiches gilt für die Chloroplasten photosynthetisch aktiver Organismen.

Siehe auch Extrachromosomale Vererbung

Diagnose und Behandlung

Bei Verdacht auf eine Erbkrankheit kann eine humangenetische Untersuchung Klarheit verschaffen. Dabei werden die Chromosomen auf zahlenmäßige und strukturelle Veränderungen überprüft. Besteht dringender Verdacht auf einen bestimmten genetischen Defekt ist auch eine weitergehende, aufwändige Untersuchung einzelner Genkonstellationen möglich. Die Ergebnisse können dann bei der Risikoabschätzung bzgl. einer Vererbung hilfreich sein.

Therapeutisch kann bei einer vorliegenden Besonderheit des Erbguts mit den heutigen medizinischen Möglichkeiten nicht auf die Ursachen eingewirkt werden. Es werden daher meist Ratschläge in Bezug auf die Lebensweise, Aufklärung über Risikofaktoren und symptomatische Maßnahmen getroffen. Dies sind dann individuelle Entscheidungen, zumal es sich nicht immer um eine Krankheit, sondern oft um eine Disposition handelt.

Geschichte

Der erst seit dem 20. Jahrhundert in der Bedeutung genetische Krankheit verwendete Begriff der Erbkrankheit[4] wurde in der ersten Hälfte des 20. Jahrhunderts auch häufig falsch verwendet, unter anderem für angebliche „Krankheiten“ wie „kriminelle Neigung“ oder „Asozialität“.[5] Dieses Denken beeinflusste Sterilisations-Programme und den Euthanasie-Gedanken und fand seine extreme Ausprägung im deutschen Nationalsozialismus, war aber zum damaligen Zeitpunkt auch in vielen anderen Ländern wie den USA, England und Frankreich vorhanden. Heute werden nur noch solche Krankheiten als Erbkrankheiten bezeichnet, die möglichst klar abgrenzbar sind und mit sehr hoher Wahrscheinlichkeit auf Gendefekte zurückgehen.

Sonstige Erbkrankheiten und Besonderheiten

Genetisch bedingte Disposition

Diverse Erkrankungen, Behinderungen und Besonderheiten sind nicht im Sinne einer klassischen Erbkrankheit erblich, sondern ihr Auftreten kann durch eine (mitunter familiäre) genetische Erkrankungsdisposition (Veranlagung, Anfälligkeit) bedingt sein. Hierzu zählen z. B.:

Siehe auch

Weblinks

 Wikibooks: Klinische Humangenetik – Lern- und Lehrmaterialien
 Wiktionary: Erbkrankheit – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Ulrich Weber: Biologie Oberstufe. Gesamtband. Cornelsen, Berlin 2001, ISBN 3-464-04279-0, S. 180–182.
  2. Ensembl Datenbank, abgerufen am 11. Februar 2017.
  3. J. E. Wraith: Ornithine carbamoyltransferase deficiency. In: Archives of Disease in Childhood. Januar 2001, Band 84, Nr. 1, S. 84–88: Review. PMID 11124797.
  4. Werner Sohn: Erbkrankheiten. In: Werner E. Gerabek, Bernhard D. Haage, Gundolf Keil, Wolfgang Wegner (Hrsg.): Enzyklopädie Medizingeschichte. De Gruyter, Berlin/ New York 2005, ISBN 3-11-015714-4, S. 366 f.; hier: S. 366.
  5. Wolfgang Ayaß: „Asozialer Nachwuchs ist für die Volksgemeinschaft vollkommen unerwünscht“. Die Zwangssterilisationen von sozialen Außenseitern. In: Margret Hamm (Hrsg.): Lebensunwert - zerstörte Leben. Zwangssterilisation und „Euthanasie“. Verlag für akademische Schriften (VAS), Frankfurt am Main 2005, ISBN 3-88864-391-0, S. 111–119.
Bitte beachten Sie den Hinweis zu Gesundheitsthemen!


Dieser Artikel basiert (teilweise) auf dem Artikel Erbkrankheit aus der freien Enzyklopädie Wikipedia und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar.