Zelle (Biologie) und Strömungsmechanik: Unterschied zwischen den Seiten

Aus AnthroWiki
(Unterschied zwischen Seiten)
imported>Odyssee
Keine Bearbeitungszusammenfassung
 
imported>Joachim Stiller
Keine Bearbeitungszusammenfassung
 
Zeile 1: Zeile 1:
[[Datei:Paramecium.jpg|miniatur|Das [[Wikipedia:Pantoffeltierchen|Pantoffeltierchen]] (''Paramecium aurelia'') als klassisches Beispiel für einen [[Wikipedia:Eukaryoten|eukaryotischen]] [[Wikipedia:Einzeller|Einzeller]].]]
Die '''Strömungsmechanik''', '''Fluidmechanik''' oder '''Strömungslehre''' ist die [[Wissenschaft]] vom physikalischen Verhalten von [[Fluid]]en. Die in der Strömungsmechanik gewonnenen Kenntnisse sind Gesetzmäßigkeiten in Strömungsvorgängen und dienen der Lösung von Strömungsproblemen in der Auslegung von durch- bzw. umströmten Bauteilen sowie der Überwachung von '''Strömungen'''. Angewendet wird sie unter anderem im [[Maschinenbau]], [[w:Chemieingenieurwesen|Chemieingenieurwesen]], der [[Wasserwirtschaft|Wasser-]] und [[Energiewirtschaft]], [[Meteorologie]], [[Astrophysik]] und der [[Medizin]]. Ihre Grundlagen findet sie in der [[Kontinuumsmechanik]] und [[Thermodynamik]], also der [[Klassische Physik|klassischen Physik]].
[[Datei:Cholera bacteria SEM.jpg|mini|[[Wikipedia:Cholera|Cholera]]-Bakterien unter dem [[Wikipedia:Elektronenmikroskop|Elektronenmikroskop]] als Beispiel für einfache [[Wikipedia:Prokaryoten|prokaryotische]] Zellen.]]


Die '''Zelle''' (von [[lat.]] ''cellula''‚ „kleine Kammer, Zelle“; {{ELSalt|κύτος}} ''kytos'' „Zelle“) ist die kleinste [[Biologie|biologische]] Einheit der heute auf [[Erde (Planet)|Erden]] lebenden [[Organismus|Organismen]]. Die fast nur als [[Wikipedia:Einzeller|Einzeller]] auftretenden [[Wikipedia:Prokaryoten|Prokaryoten]], zu denen die [[Bakterien]] und [[Archaeen]] gehören, haben keinen echten [[Zellkern]] und sind einfacher aufgebaut als die [[Wikipedia:Eukryoten|Eukryoten]], die über einen Zellkern mit [[Wikipedia:Kernhülle|Kernhülle]] verfügen, der die in [[Wikipedia:Chromosom|Chromosom]]en organisierte Erbinformation, die [[Wikipedia:Desoxyribonukleinsäure|DNA]], enthält. '''Mehrzeller''' bzw. '''Vielzeller''' bilden verschiedenartig differenzierte Zellen, die sich nach ihrer [[Funktion]] und [[Morphologie]] in verschiedene '''Zelltypen''' einteilen lassen; im menschlichen Organismus gibt es mehr als 210 verschiedene Zelltypen (→ [[Wikipedia:Liste menschlicher Zelltypen|Liste menschlicher Zelltypen]]). Spezialisierte Zellen können sich bei Vielzellern auch zu funktionellen Einheiten in Form eines [[Gewebe (Biologie)|Gewebes]] zusammenschließen. Vielzellige [[Tiere]] mit Ausnahme der [[Wikipedia:Schwämme|Schwämme]] werden daher auch als '''Gewebetiere''' (''Eumetazoa'') bezeichnet. Die '''pluripotenten''' embryonalen '''Stammzellen''' können sich noch zu Zellen aller drei [[Keimblatt|Keimblätter]] differenzieren, während sich adulte Stammzellen nur mehr zu bestimmten Gewebetypen entwickeln.
== Historische Entwicklung ==
Die Strömungsmechanik beruht auf der [[Kontinuumsmechanik]], [[Physik]] und [[Differentialrechnung]], deren jeweiliger historischer Werdegang dort nachgeschlagen werden kann. An dieser Stelle soll die spezifisch strömungsmechanische Entwicklung skizziert werden.


Zellen bilden aus [[Anthroposophie|anthroposophischer]] Sicht allerdings nicht den Ursprung des irdischen Lebens, sondern sind erst in einer späteren Phase der [[Erdentwicklung]] entstanden. Ursprünglich, nach der Trennung von [[Sonne]] und Erde in der [[Hyperboräische Zeit|hyperboräischen Zeit]], war die Erde als Ganzes ein [[Lebewesen|lebendiges Wesen]], das sein [[Leben]] der [[Kosmos|kosmisch]]-[[ätherisch]]en Umgebung zu verdanken hat. Aus diesem Gesamtleben der Erde haben sich zunächst riesenhafte Einzellebewesen von noch sehr flüchtiger und wandelbarer [[Gestalt]] und zugleich auch die ersten toten, aber ebenfalls noch sehr weichen [[Stoff]]e abgesondert. Zu dieser Zeit bildeten [[Mond]] und Erde noch einen gemeinsamen Himmelskörper. Aus diesen Urlebewesen, die noch keine fossilen Spuren hinterlassen haben, sind erst allmählich die ersten [[Wikipedia:Einzeller|Einzeller]] und später auch [[Mehrzeller|mehrzellige]] [[Lebewesen]] entstanden.
[[Archimedes]] (287–212 v. Chr.) befasste sich mit strömungsmechanischen Fragestellungen ([[Archimedisches Prinzip]], [[Archimedische Schraube]]). [[Sextus Iulius Frontinus]] (ca. 35–103 n. Chr.) dokumentierte seine Kenntnisse über die Wasserversorgung in der Antike, über tausend Jahre bevor sich [[Leonardo da Vinci#Wissenschaftliche Arbeiten|Leonardo da Vinci]] (1452–1519) mit Strömungsvorgängen auseinandersetzte.


<div style="margin-left:20px">
[[Galileo Galilei]] (1564–1642) gab Impulse in der experimentellen Hydrodynamik und überarbeitete das von [[Aristoteles]] eingeführte Konzept des [[Vakuum]]s. [[Evangelista Torricelli]] (1608–1647) erkannte im Gewicht der [[Erdatmosphäre]] die Ursache des [[Luftdruck]]s und verband den horizontal ausgestoßenen Flüssigkeitsstrahl mit den Gesetzen des freien Falls ([[Torricelli’sches Ausflussgesetz]]). [[Blaise Pascal]] (1623–1662) beschäftigte sich unter anderem mit der Hydrostatik und formulierte den Satz von der allseitigen [[Druck (Physik)|Druck]]<nowiki>fortpflanzung</nowiki>. [[Edme Mariotte]] (1620–1684) lieferte Beiträge zu Problemen der Flüssigkeiten und Gase und stellte dabei erste Konstitutivgesetze auf. [[Henri de Pitot]] (1695–1771) untersuchte den Staudruck in Strömungen.
"Mit dem Heraustreten der feinsten Materien war eine Verdichtung
der zurückbleibenden Materie verbunden. Auf der einen Seite
tritt heraus der fein leuchtende Sonnenleib, auf der anderen Seite
wird die Materie der Erde viel dichter. Sie kommt in einen wässerigen
Zustand, dichter als unser Meerwasser, denn es war in ihr
auch alles enthalten, was heute fest ist. Mit dem Flüssigwerden tritt
ein neues Element auf. In dem Maße, wie das Wasser auftritt, wirkt
aus dem Kosmos und aus der Erde heraus die Sphärenmusik, die
Weltentöne. Es ist nicht solche Musik wie heute, die durch die Luft
fortgepflanzt wird. Die Entwickelung der Erde steht nun unter
dem Einfluß der Weltenmusik. Die Materien heben sich als einzelne
Stoffe aus der undifferenzierten, großen Materie heraus. Es fangen
die Erdenstoffe an zu tanzen unter dem Einfluß der Weltenmusik.
Das ist die Differenzierung der Stoffe in lauter organische Stoffe,
zum Beispiel in Eiweiß. So entstand organische Materie, das Protoplasma,
unter dem Einfluß der Weltenmusik, ähnlich wie heute die
Chladnischen Klangfiguren. Diese Stoffe, eiweißartige, leimige Substanz,
werden hineingeschoben in die früheren Kraftlinien der
Menschenanlage. Die Zellen, die man heute als das erste in der
Entwickelungsgeschichte der Organismen ansieht, entstanden viel
später. Sie wurden erst geboren von gewissen Wesenheiten. Auch
das Atom ist nie das ursprüngliche, ist immer das, was aus dem
Ganzen herausfällt. Niemals setzt sich das Ganze aus den Zellen
zusammen. Gefördert wurde der ganze Vorgang dadurch, daß der
Mond noch in dem Erdenkörper darin war." {{Lit|{{G|98|215}}}}
</div>


<div style="margin-left:20px">
[[Isaac Newton]] veröffentlichte 1686 seine dreibändige [[Philosophiae Naturalis Principia Mathematica|Principia]] mit den Bewegungsgesetzen und definierte zudem im zweiten Buch die [[Viskosität]] einer idealen (''[[Newtonsches Fluid|newtonschen]]'') Flüssigkeit. [[Daniel Bernoulli]] (1700–1782) begründete die Hydromechanik, indem er Druck und Geschwindigkeit in der nach ihm benannten [[Bernoulli-Gleichung|Energiegleichung]] verband und [[Leonhard Euler]] (1707–1783) formulierte die [[Euler-Gleichungen (Strömungsmechanik)|Bewegungsgleichungen]] für [[ideale Flüssigkeit]]en. Von nun an konnten Erkenntnisse auch durch Untersuchungen der mathematischen Gleichungen gewonnen werden. [[Jean-Baptiste le Rond d’Alembert]] (1717–1783) führte die [[eulersche Betrachtungsweise]] und [[komplexe Zahl]]en in der [[Potentialströmung|Potentialtheorie]] ein, leitete die lokale [[Kontinuumsmechanik#Massenbilanz|Massenbilanz]] her und formulierte das [[d’Alembertsches Paradoxon|d’Alembert’sche Paradoxon]], demgemäß von der Strömung idealer Flüssigkeiten auf einen Körper keine Kraft in Richtung der Strömung ausgeübt wird (was Euler schon vorher bewies). Wegen dieser und anderer Paradoxien reibungsfreier Strömungen war klar, dass die Euler’schen Bewegungsgleichungen zu ergänzen sind.
"Und dem Sonnenhaften
entgegengestellt empfand man das Mondenhafte. Die Kräfte, die
dann im Monde konzentriert waren, waren einstmals mit der Erde
verbunden.


Aber sie sind nicht restlos fortgezogen, sie haben etwas zurückgelassen
[[Claude Louis Marie Henri Navier]] (1785–1836) und [[George Gabriel Stokes]] (1819–1903) erweiterten die Euler’schen Bewegungsgleichungen um [[Viskosität|viskose]] Terme zu den [[Navier-Stokes-Gleichungen]], die Strömungen realitätsnah modellieren. [[Giovanni Battista Venturi]] (1746–1822), [[Gotthilf Heinrich Ludwig Hagen]] (1797–1884) und [[Jean Léonard Marie Poiseuille]] (1799–1869) führten experimentelle Untersuchungen in Strömungen durch. [[William Froude]] (1810–1879) ermittelte den Schwimmwiderstand von Schiffen, [[Ernst Mach]] (1838–1916) leistete Pionierarbeit in der Überschallaerodynamik, [[John Strutt, 3. Baron Rayleigh|Lord Rayleigh]] (1842–1919) untersuchte hydrodynamische Instabilitäten und [[Vincent Strouhal]] (1850–1922) erforschte die Schwingungsanregungen durch ablösende [[Wirbel (Strömungslehre)|Wirbel]]. [[Hermann von Helmholtz]] (1821–1894) formulierte die nach ihm benannten [[Helmholtzsche Wirbelsätze|Wirbelsätze]] und begründete durch mathematisch ausgearbeitete Untersuchungen über Wirbelstürme und Gewitter die wissenschaftliche [[Meteorologie]]. Weitere bahnbrechende Arbeiten wurden von [[Osborne Reynolds]] (1832–1912, [[Reynolds-Gleichungen]], [[Reynoldszahl]]) und [[Ludwig Prandtl]] (1875–1953, unter anderem zur [[Hydrodynamische Grenzschicht|hydrodynamischen Grenzschicht]]) vorgelegt.
in der Erde. Wenn es bloß Sonnenkräfte gäbe, so würden
allein wuchernde, wachsende Zellen zum Beispiel entstehen, Lebendiges
immer mit dem kleinen oder großen Zellencharakter entstehen.
Das Mannigfaltige, das Gestaltete, das rührt nicht von den Sonnenkräften,
sondern von den mit den Sonnenkräften zusammenwirkenden
Mondenkräften her." {{Lit|{{G|228|108}}}}
</div>


<div style="margin-left:20px">
[[Andrei Nikolajewitsch Kolmogorow]] (1903–1987) erweiterte die Theorie der [[Turbulente Strömung|turbulenten Strömung]]. Ab Mitte des 20. Jahrhunderts entwickelten sich die [[Strömungsmesstechnik]] und [[numerische Strömungsmechanik]] so weit, dass mit ihrer Hilfe Lösungen für praktische Probleme gefunden werden können.<ref>{{Literatur |Autor=F. Durst |Titel=Grundlagen der Strömungsmechanik |Verlag=Springer |Datum=2006 |ISBN=3-540-31323-0 |Seiten=10–16}}</ref>
"Nun, ich habe schon früher und auch wieder gestern darauf
aufmerksam gemacht, daß man in der heutigen Wissenschaft vielfach
erwartet, es werde sich einstmals ergeben, daß die Zellen eine sehr komplizierte
chemische Struktur haben, so daß wir gewissermaßen die
komplizierteste chemische Formel finden würden für das, was in der
Zelle sich darbietet. Das ist aber ein vollständig unrichtiger Gedanke.


[[Datei:GA207 127.gif|center|250px|Zeichnung aus GA 207, S. 127 (Tafel 14)]]
== Methodik ==
Gegenstand der Strömungsmechanik sind die Bewegungen von Fluiden, ruhenden, fließenden oder strömenden Medien. Die Suche nach Gesetzmäßigkeiten von Bewegungen und Lösungen für Strömungsprobleme bedient sich dreierlei Methoden:
; Analytische Methoden: Gesetzmäßigkeiten werden in Form von Gleichungen formuliert, die mit Hilfe der angewandten Mathematik behandelt werden können.
; Experimentelle Methoden: Die Phänomenologie der Strömungsvorgänge wird erkundet mit dem Ziel Gesetzmäßigkeiten herauszufinden.
; Numerische Methoden: Durch einen detaillierten Einblick auch in komplizierte und kurzzeitige Strömungsvorgänge unterstützen und ergänzen die Berechnungen die analytischen und experimentellen Methoden.


In der Zelle, schon in der gewöhnlichen organischen Zelle ist es so
Die Komplexität des Gegenstandes macht die kombinierte Nutzung aller drei Methoden für die Lösung praktischer Strömungsprobleme notwendig.
(siehe Zeichnung, hell), daß das chemische Zusammenhalten darinnen
nicht etwa stärker ist als in einer gewöhnlichen komplizierten chemischen
Verbindung, sondern im Gegenteil: chaotisch werden die chemischen
Wahlverwandtschaften gerade, und am allerchaotischsten sind
sie in der befruchteten Keimzelle. Die befruchtete Keimzelle ist in bezug
auf das Materielle direkt Chaos, Chaos, das zerfällt, Chaos, das
wirklich zerfällt. In dieses verfallende Chaos ergießt sich das, was ich
Ihnen als den Menschen geschildert habe, der sich eben in der Weise,
wie ich es beschrieben habe, gebildet hat (lila). Und nicht durch den
Keim selber, sondern durch die Prozesse, die im mütterlichen Leibe
zwischen dem Embryo und der Umgebung vor sich gehen, bildet sich
dann das eigentlich Physische aus. Es wird also tatsächlich dasjenige,
was da aus der geistigen Welt herunterkommt, in das Leere hineingelegt
und nur durchtränkt mit mineralischer Substanz. Es ist, wie Sie
sehen können, ein durchaus durchsichtiger Vorgang, der hier geschildert
wird." {{Lit|{{G|207|127f}}}}
</div>


Auch die Zellen selbst haben sich durch den kosmischen Einfluss gebildet:
== Teilgebiete ==
=== Fluidstatik ===
{{Hauptartikel|Fluidstatik}}
[[Datei:Hydrostatisches Paradoxon4.svg|mini|[[Hydrostatisches Paradoxon]]: Der Flüssigkeitsdruck am Boden (rot) ist in allen drei Gefäßen identisch.]]


<div style="margin-left:20px">
Die Fluidstatik betrachtet ''ruhende'' Fluide, wobei die [[Hydrostatik]] Inkompressibilität voraussetzt, die Wasser in guter Näherung aufweist. Hier interessiert die Druckverteilung in ruhenden Flüssigkeiten und die daraus resultierenden Kräfte auf Behälterwände, siehe Bild. Schwimmende Körper erfahren einen [[Statischer Auftrieb|statischen Auftrieb]] und es interessiert die Frage, unter welchen Voraussetzungen die [[Schwimmstabilität]] des Körpers gegeben ist. Thermische Effekte sind hier von untergeordneter Bedeutung.
"Diese Kräfte, die im Makrokosmos zu
beobachten sind, wirken bis in das Zellige hinein. Und das, was in
den Zellen wirkt, ist im Grunde genommen nichts anderes als ein
Abbild dieser makrokosmischen Wirkung." {{Lit|{{G|312|109}}}}
</div>


Insbesondere bildet die befruchtete '''Eizelle''' ([[Latein|lat.]] ''ovum'', Mehrzahl: ''ova''), die '''Zygote''', in ihrer inneren [[Struktur]] die kosmischen Verhältnisse im Kleinen ab:
Die [[Aerostatik]] betrachtet die Gesetzmäßigkeiten in ruhender [[Atmosphäre (Astronomie)|Atmosphäre]] oder [[Erdatmosphäre]] und hier sind Dichteänderungen und thermische Effekte ausschlaggebend. Betrachtet wird beispielsweise die [[Atmosphärenschichtung]] und die [[Barometrische Höhenformel|Druck- und Temperaturverteilung]] über die Höhe in der Erdatmosphäre.


<div style="margin-left:20px">
=== Ähnlichkeitstheorie ===
"Wenn diese kleine Zelle im Leibe der Mutter
{{Hauptartikel|Ähnlichkeitstheorie}}
ist, dann wirkt eigentlich die ganze Welt auf diese Zelle ein - die ganze
[[Datei:MD-11 12ft Wind Tunnel Test.jpg|mini|[[Windkanal]] der [[National Aeronautics and Space Administration|NASA]] mit dem Modell einer MD-11]]
Welt. Heute kann man natürlich auf diese Dinge noch nicht mit dem
nötigen Verständnis eingehen. Aber dennoch: Es wirkt die ganze Welt
auf eine solche Zelle ein. Es ist nicht einerlei, ob, sagen wir, dieses Ei sich
teilt, wenn da oben der Mond vor der Sonne steht; da ist es anders, als
wenn der Mond abseits von der Sonne steht und so weiter. Also dei
ganze Sternenhimmel hat auf diese Zelle einen Einfluß. Und unter
dem Einfluß dieses Sternenhimmels bildet sich auch das Innere der
Zelle aus.


Nun, sehen Sie, wenn das Kind in den ersten Monaten ist - ich habe
Die Ähnlichkeitstheorie beschäftigt sich damit, aus einem bekannten und zugänglichen (Modell)-System Rückschlüsse auf ein interessierendes aber experimentell unzugängliches (Real)-System zu bilden, das z.&nbsp;B. größer oder kleiner, schneller oder langsamer oder sich in anderen Dimensionen nur quantitativ vom Modellsystem unterscheidet, siehe Bild. ''Kinematisch ähnlich'' sind zwei Strömungen, wenn sie ähnliche räumliche Bewegungen ausführen. Voraussetzung hierfür ist, dass ähnliche Randbedingungen vorliegen (''geometrische Ähnlichkeit'') und auf die Fluidelemente ähnliche Kräfte wirken, was ''dynamische Ähnlichkeit'' bedeutet. Die Ähnlichkeitsbetrachtungen werden auch auf Wärmetransportprobleme bei ''thermischer Ähnlichkeit'' angewendet. Begründet wurde die Ähnlichkeitstheorie 1883 von [[Osborne Reynolds]] in Form des Reynolds’schen Ähnlichkeitsgesetzes, das besagt, dass die Strömungen am Original und am Modell mechanisch ähnlich verlaufen, wenn die [[Reynolds-Zahl]]en übereinstimmen.
es Ihnen schon gesagt -, da ist ja eigentlich vom Kind nur der Kopf ausgebildet
(es wird gezeichnet). Der Kopf ist ausgebildet, und der übrige
Körper ist eigentlich nur solch ein Anhängsel; da sind dann kleine
Stummel, die Hände, und andere kleine Stummel, die Beine. Und immer
mehr und mehr wird dieses kleine Wesen eben so, daß es seine Hände
und Arme umbildet, und diese Stummel da zu Füßen umbildet und so
weiter.


Woher kommt das? Das müssen wir uns fragen: Woher kommt das?
=== Stromfadentheorie ===
Das kommt davon her, daß der Mensch, je früher er im Keimzustand
{{Hauptartikel|Stromfadentheorie}}
ist, desto mehr noch der Sternenwelt ausgesetzt ist, und je mehr er sich
Die Stromfadentheorie betrachtet Strömungen entlang einer von [[Stromlinie]]n gebildeten, (infinitesimal) dünnen Stromröhre, in der die Zustandsgrößen Geschwindigkeit, Druck, Dichte und Temperatur als über den Querschnitt des Stromfadens konstant angenommen werden können. Auf diese Volumina können die Integralformen der Grundgleichungen angewendet werden, um so weitere Lösungen von Strömungsproblemen zu erarbeiten. Ein stationäres Strömungsgebiet besteht aus Stromfäden, so dass es gelingt die globalen Eigenschaften der Strömung mit den Eigenschaften der Stromfäden zu beschreiben. Prominenter Anwendungsfall ist die Strömung durch Röhren und [[Düse]]n. Die Gesamtheit der eindimensionalen Strömungen von Wasser werden unter dem Sammelnamen [[Hydraulik]] zusammengefasst.<ref>{{Literatur |Hrsg=H. Oertel |Titel=Prandtl-Führer durch die Strömungslehre. Grundlagen und Phänomene |Auflage=13. |Verlag=Springer Vieweg |Datum=2012 |ISBN=978-3-8348-1918-5 |Seiten=58}}</ref> Die [[Fluidtechnik]] und [[Fluidik]] wenden die Hydraulik und [[Pneumatik]] an, um Energie zu übertragen oder Signale zu verarbeiten.
entwickelt, je längere Monate er im Mutterleibe ist, desto mehr der
Schwerkraft der Erde ausgesetzt wird. Solange der Sternenhimmel auf
den Menschen wirkt, ordnet er alles so an, daß die Hauptsache der
Kopf ist. Erst die Schwerkraft treibt das andere da heraus. Und es ist
so, daß eigentlich, je weiter wir zurückgehen in den ersten, zweiten
Monat der Schwangerschaft, wir da um so mehr finden, daß alle diese
Zellen, die da entstehen - Millionen von solchen Zellen bilden sich nach
und nach -, dem Sterneneinfluß ausgesetzt sind und dann immer mehr
und mehr von der Erde abhängig werden." {{Lit|{{G|348|59f}}}}
</div>


<div style="margin-left:20px">
=== Potentialströmungen ===
"Man studiert, wie
{{Hauptartikel|Potentialströmung}}
sich dieses innere Gefüge ändert, während die weibliche Keimzelle
[[Datei:Streamlines relative to airfoil.png|mini|Stromlinien um ein [[Profil (Strömungslehre)|Flügelprofil]]]]
zum Beispiel befruchtet wird. Man verfolgt die einzelnen Stadien,
wie die Zelle sich in ihrer inneren Struktur ändert, wie sie sich dann
teilt, wie sich der Teil, Zelle an Zelle, angliedert und aus der Zusammenfügung
eine kompliziert aufgebaute Gestalt entsteht. Das
studiert man. Aber es fällt einem nicht ein, sich zu fragen: Ja, womit
hängt denn eigentlich dieses ganze Leben in der Zelle zusammen?
Was liegt denn da eigentlich vor? - Es fällt einem nicht ein,
das zu fragen.


Was da vorliegt in der Zelle, das ist ja zunächst mehr abstrakt
In Potentialströmungen ergibt sich das [[Geschwindigkeitsfeld]] aus der Ableitung eines [[Geschwindigkeitspotential]]s, weshalb solche Strömungen grundsätzlich reibungs- und [[Wirbelstärke|rotationsfrei]] sind. Eine [[laminare Strömung]] bei niedrigen [[Reynolds-Zahl]]en folgt in guter Näherung einer Potentialströmung, wenn die fluiddynamische Grenzschicht an den Rändern der Strömung keine wesentliche Rolle spielt. Die Potentialtheorie findet Anwendung in der Auslegung und im Design von Flugzeugen. Potentialströmungen sind relativ einfach zu berechnen und erlauben analytische Lösungen für viele Strömungsprobleme.
so zu fassen: Ich habe die Zelle. Nehmen wir sie zunächst in ihrer
am häufigsten vorkommenden Form, in der kugeligen Form. Diese
kugelige Form wird ja mitbedingt von der dünnflüssigen Substanz.
Diese kugelige Form hat in sich eingeschlossen die Gerüstform. Und
die kugelige Form, was ist sie? Die dünnflüssige Masse ist noch ganz
sich selbst überlassen, sie folgt also denjenigen Impulsen, die um sie
herum sind. Was tut sie? Ja - sie bildet das Weltenall nach! Sie hat
deshalb ihre kugelige Form, weil sie den ganzen Kosmos, den wir
uns auch zunächst ideell als eine Kugelform, als eine Sphäre vorstellen,
weil sie den ganzen Kosmos in Kleinheit nachbildet. Jede
Zelle in ihrer Kugelform ist nichts anderes als eine Nachbildung der
Form des ganzen Kosmos. Und das Gerüst darin, jede Linie, die da
im Gerüst gezogen ist, ist abhängig von den Strukturverhältnissen
des ganzen Kosmos. - Wenn ich mich jetzt zunächst abstrakt ausdrücken
soll: Nehmen Sie an, Sie haben die Weltensphäre, ideell
begrenzt (Fig. 7). Darin meinetwillen haben Sie hier einen Planeten
und hier einen Planeten (a, ai). Die wirken so, daß die Impulse,
mit denen sie aufeinander wirken, in dieser Linie liegen. Hier (m)
bildet sich, natürlich schematisch gezeichnet, eine Zelle, sagen wir.
Ihre Umgrenzung bildet die Sphäre nach. Hier innerhalb ihres Gerüstes
(Fig. 8) hat sie ein Festes, welches von der Wirkung dieses
Planeten (a) auf diesen (ai) abhängt. Nehmen Sie an, hier wäre
eine andere Planetenkonstellation, die so aufeinander wirkt (b, bi).


[[Datei:GA323 032.gif|center|500px|Fig. 7 und Fig. 8 aus GA 323, S. 32]]
Eine andere Idealisierung, die Rotation erlaubt, aber nur inkompressible Medien betrachtet, gestattet die Einführung einer [[Stromfunktion]]. Diese ist allerdings nur in ebenen oder als [[Stokessche Stromfunktion]] in drei dimensionalen, axialsymmetrischen Fällen anwendbar. Die Höhenlinien der Stromfunktionen sind Stromlinien.


Hier wäre wiederum ein anderer Planet (c), der keinen Gegensatz
In ebenen, dichtebeständigen ''und'' rotationsfreien Strömungen kann das Geschwindigkeitsfeld mit komplexen Funktionen ausgedrückt und somit deren weitreichenden Eigenschaften ausgenutzt werden. Mit Hilfe dieser Theorie konnten Anfang des 20. Jahrhunderts erste auftriebserzeugende Flügelprofile entwickelt werden, siehe Bild.
hat. Der verrenkt diese ganze Sache, die sonst vielleicht rechtwinkelig
stünde. Es entsteht die Bildung etwas anders. Sie haben in der
Gerüststruktur eine Nachbildung der ganzen Verhältnisse im Planetensystem,
überhaupt im Sternensystem. Sie können konkret hineingehen
in den Aufbau der Zelle, und Sie bekommen eine Erklärung
für diese konkrete Gestalt nur, wenn Sie in der Zelle sehen ein Abbild
des ganzen Kosmos.


Und nun nehmen Sie die weibliche Eizelle und stellen sich vor,
=== Gasdynamik ===
diese weibliche Eizelle hat die kosmischen Kräfte zu einem gewissen
{{Hauptartikel|Gasdynamik}}
inneren Gleichgewicht gebracht. Diese Kräfte haben Gerüstform angenommen
Der Gegenstand der Gasdynamik sind schnelle Strömungen dichteveränderlicher Fluide, die bei Flugzeugen und in [[Düse]]n vorkommen. Diese Strömungen werden durch die [[Mach-Zahl]] M charakterisiert. Kompressibilität wird erst ab Machzahlen größer 0,2 bedeutsam, so dass dann hohe Reynolds-Zahlen vorliegen und Viskositätsterme und Gravitionskräfte vernachlässigbar sind. Die Strömungen sind auch schneller als der Wärmetransport, weswegen [[adiabatische Zustandsänderung]]en angenommen werden können. Die Gesetzmäßigkeiten werden mit der Stromfaden- und Ähnlichkeitstheorie abgeleitet. Ein besonderes Phänomen, das hier auftreten kann, ist die [[Stoßwelle]] und der [[Verdichtungsstoß]], dessen bekanntester Vertreter die [[Schallmauer]] ist.
und sind in der Gerüstform in einer gewissen Weise zur
Ruhe gekommen, gestützt durch den weiblichen Organismus. Nun
geschieht die Einwirkung der männlichen Geschlechtszelle. Die hat
nicht den Makrokosmos in sich zur Ruhe gebracht, sondern sie wirkt
im Sinne irgendwelcher Spezialkraft. Sagen wir, es wirkt die männliche
Geschlechtszelle im Sinne gerade dieser Kraftlinie auf die
weibliche Eizelle, die zur Ruhe gekommen ist, ein. Dann geschieht
durch diese Spezialwirkung eine Unterbrechung der Ruheverhältnisse.
Es wird gewissermaßen die Zelle, die ein Abbild ist des ganzen
Makrokosmos, dazu veranlaßt, ihre ganze mikrokosmische Gestalt
wiederum hineinzustellen in das Wechselspiel der Kräfte. In der
weiblichen Eizelle ist zunächst in ruhiger Abbildung der ganze Makrokosmos
zur Ruhe gekommen. Durch die männliche Geschlechtszelle
wird die weibliche herausgerissen aus dieser Ruhe, wird wiederum
in ein Spezialwirkungsgebiet hineingezogen, wird wiederum zur
Bewegung gebracht, wird wiederum herausgezogen aus der Ruhe.
Sie hat sich zur Nachbildung des Kosmos in die ruhige Form zusammengezogen,
aber diese Nachbildung wird hineingezogen in die
Bewegung durch die männlichen Kräfte, die Bewegungsnachbildungen
sind. Es werden die weiblichen Kräfte, die Nachbildungen
der Gestalt des Kosmos und zur Ruhe gekommen sind, aus der
Ruhe, aus der Gleichgewichtslage gebracht.


Da bekommen Sie Anschauungen über die Form und Gestaltung
=== Fluiddynamik ===
des Kleinsten, des Zellenhaften, von der Astronomie aus. Und Sie
{{Hauptartikel|Fluiddynamik}}
können gar nicht Embryologie studieren, ohne daß Sie Astronomie
[[Datei:StokesWelle.png|mini|Stokes’sche Welle mit [[Bahnlinie]]n (türkis) einiger Wasserteilchen]]
studieren. Denn das, was Ihnen die Embryologie zeigt, ist nur der
 
andere Pol desjenigen, was Ihnen die Astronomie zeigt. Wir müssen
Die Fluiddynamik ist das Teilgebiet, das sich mit bewegten Fluiden beschäftigt. Analytische Lösungen können hier nur durch Beschränkung auf eine oder zwei Dimensionen, auf Inkompressibilität, einfache Randbedingungen und auf kleine Reynolds-Zahlen erreicht werden, wo die Beschleunigungsterme gegenüber den Viskositätstermen vernachlässigt werden können. Zwar sind solche Lösungen praktisch wenig relevant, vertiefen jedoch trotzdem das Verständnis von Strömungsvorgängen.
gewissermaßen auf der einen Seite den Sternenhimmel verfolgen,
 
wie er aufeinanderfolgende Stadien zeigt, und wir müssen nachher
Bei kleinen Reynoldszahlen vermag die Viskosität des Fluids kleine Fluktuationen der Strömungsvariablen zu dämpfen, so dass eine eventuell auch zeitabhängige, laminare Strömung dann stabil gegenüber kleinen Störungen ist. Mit zunehmender Reynolds-Zahl wird dieser Dämpfungsmechanismus überfordert und die laminare Strömung geht in eine irreguläre [[turbulente Strömung]] über. Die Turbulenzforschung erreicht Einsichten über solche Strömungen durch statistische Betrachtungen.
verfolgen, wie eine befruchtete Keimzelle sich entwickelt. Beides gehört
 
zusammen, denn das eine ist nur das Abbild des anderen.
Bei großen Reynoldszahlen sind umgekehrt die Viskositätsterme gegenüber den Beschleunigungstermen klein und der Einfluss der Randbedingungen auf die Strömung ist auf wandnahe Bereiche beschränkt. Mit diesen beschäftigt sich die von [[Ludwig Prandtl]] begründete [[Grenzschichttheorie]].
Wenn Sie nichts von Astronomie verstehen, werden Sie niemals die
 
Kräfte verstehen, die im Embryo wirken. Und wenn Sie nichts von
Die [[Aerodynamik]] untersucht das Verhalten von Körpern in kompressiblen Fluiden (zum Beispiel Luft) und ermittelt Kräfte und Momente, die auf umströmte Körper wirken. Zur Aerodynamik gehört die Vorhersage der Windkräfte auf Gebäude, Kraftfahrzeuge und Schiffe.
Embryologie verstehen, so werden Sie niemals den Sinn verstehen
 
von den Wirkungen, die dem Astronomischen zugrunde liegen.
Das Wissensgebiet um die Wellenbewegungen in Fluiden befasst sich mit zeitlichen ''und'' räumlichen Bewegungen eines Fluids um eine mittlere Ruhelage. Die [[Aeroakustik]] beschäftigt sich mit den Gesetzmäßigkeiten solcher Wellen – [[Schallwelle]]n – in der Luft. Die Hydromechanik unterscheidet u.&nbsp;a. die [[Schwerewelle]]n, die höheren Stokes-Wellen, siehe Bild, die kleinen [[Kapillarwelle]]n und die aperiodischen [[Soliton]]en. In der Fluiddynamik werden die Ursachen, Eigenschaften und die Grundgleichungen dieser [[Orbitalbewegung (Wasserwellen)|Wellenbewegungen]] untersucht.
Denn diese Wirkungen zeigen sich im Kleinen in den Vorgängen
 
der Embryologie." {{Lit|{{G|323|31ff}}}}
[[Mehrphasenströmung]]en mit festen, flüssigen und/oder gasförmigen Anteilen sind die in der Natur und Technik am häufigsten auftretenden Strömungsformen und bekommen dadurch eine besondere Relevanz. Die Mischung kann einerseits bereits im Kontinuumsmodell dargestellt werden, so dass die Mischung in jedem Fluidelement vorliegt, was Vorteile bei der Betrachtung großskaliger Bewegungen hat. Andererseits kann die Strömung jeder Phase getrennt beschrieben werden und die Gesamtströmung ergibt sich dann aus der Interaktion der Phasen an ihren Grenzflächen. Hier stehen kleinskalige Effekte im Vordergrund.
</div>
 
[[Sickerströmung]]en durch poröse Medien sind in der [[Hydrogeologie]] und der [[Filtertechnik]] von Interesse. Die [[Oberflächenspannung]], die sonst bei Strömungen von untergeordneter Bedeutung ist, ist hier für die Bewegung bestimmend. Weil der Porenverlauf der festen Phase unbekannt ist, kommen Modelle zum Einsatz, die in die [[Richards-Gleichung]] münden.
 
=== Lineare Stabilitätstheorie ===
{{Hauptartikel|Lineare Stabilitätstheorie}}
[[Datei:Wavecloudsduval.jpg|mini|Kelvin-Helmholtz-Wirbel in der Atmosphäre hinter dem Monte Duval, Australien]]
 
Dieses Fachgebiet untersucht, inwieweit der Bewegungszustand einer Flüssigkeit stabil ist gegenüber kleinen Störungen. Betrachtet wird die Strömung an einer Grenzschicht, die zu einer Wand ([[Hydrodynamische Grenzschicht]]) oder zu einer Flüssigkeit mit anderen Eigenschaften liegen kann. Fluktuationen in dieser Grenzschicht können bei Instabilitäten zu qualitativ anderen Zuständen führen, die oftmals deutliche Strukturen aufweisen (siehe [[Kelvin-Helmholtz-Instabilität]] im Bild).
 
=== Strömungsmesstechnik ===
{{Hauptartikel|Strömungsmesstechnik}}
[[Datei:Laser-Doppler.jpg|mini|2D-Laser-Doppler-[[Anemometer]] an einem [[Windkanal|Strömungskanal]]]]
 
Einsatzgebiete der Strömungsmesstechnik sind die Forschung und Entwicklung, wo es gilt, Strömungsvorgänge zu untersuchen oder zu optimieren. Die Strömungsmesstechnik ist aber auch eine wesentliche Komponente für die Prozessführung in industriellen Anlagen der Chemie- oder Energiewirtschaft. Verlässliche Informationen über Eigenschaften turbulenter Strömungen können nur durch die Strömungsmesstechnik erhalten werden.
 
Von besonderem Interesse sind die grundlegenden Größen Geschwindigkeit, Druck und Temperatur. Messungen können mit in die Strömung eingebrachten Messsonden aufgenommen werden. [[Staudrucksonde]]n messen im Fluid den Gesamtdruck, aus dem indirekt auf die Geschwindigkeit rückgeschlossen werden kann. Die [[Thermische Anemometrie]] stellt eine weitere indirekte Geschwindigkeitsmessmethode dar. Der Nachteil an diesen indirekten Messungmethoden ist, dass das Messsignal nicht allein von der Geschwindigkeit, sondern auch von anderen Zustandsgrößen abhängt, die also bekannt sein müssen.
 
Verfahren wie die [[Particle Image Velocimetry]] und [[Laser-Doppler-Anemometrie]] (siehe Bild) gestattet die direkte und lokale Geschwindigkeitsmessung ohne Sonden. Insbesondere in der [[Aeroakustik]] interessieren nicht die Durchschnittswerte, sondern die Schwankungswerte des Drucks, insbesondere die [[spektrale Leistungsdichte]], die durch weitere [[Signalverarbeitung]] erhalten wird.
 
=== Numerische Strömungsmechanik ===
{{Hauptartikel|Numerische Strömungsmechanik}}
[[Datei:X-43A (Hyper - X) Mach 7 computational fluid dynamic (CFD).jpg|mini|Visualisierung einer CFD-Simulation der [[Boeing X-43]] bei [[Machzahl|Mach]]&nbsp;7]]
 
Die Leistungsfähigkeit der Computer gestattet es, die Grundgleichungen in wirklichkeitsnahen Randwertproblemen zu lösen und die erzielten, realitätsnahen Resultate haben dazu geführt, dass die numerische Strömungsmechanik ein wichtiges Werkzeug in der Strömungsmechanik wurde. In der aerodynamischen Auslegung und Optimierung haben sich die numerischen Methoden etabliert, denn sie gestatten einen detaillierten Einblick in die Strömungsvorgänge, siehe Bild, und Untersuchung von Modellvarianten.
 
Die aus der angewandten Mathematik bekannten Methoden zur Lösung gewöhnlicher Differentialgleichungen versehen vorbereitend das Strömungsgebiet mit einem „numerischen Gitter“. Potentialströmungen verlangen den geringsten Aufwand und auch die Euler-Gleichungen erlauben relativ grobe Gitter. Die bei Anwendung der Navier-Stokes-Gleichungen bedeutsamen Grenzschichten und Turbulenzen erfordern eine hohe räumliche Auflösung des Gitters. In drei Dimensionen steigt die Anzahl der Freiheitsgrade mit der dritten Potenz der Abmessung, so dass auch noch im 21. Jahrhundert der Aufwand für die [[Direkte Numerische Simulation]] bei Anwendungen in der Fahrzeugentwicklung nicht vertretbar ist. Daher kommen [[Turbulenzmodell]]e zum Einsatz, die die notwendige Auflösung zu reduzieren gestatten. Trotzdem sind oftmals Systeme mit mehreren zehnmillionen Gleichungen für mehrere tausend Iterations- oder Zeitschritte zu lösen, was eines [[Rechnerverbund]]s und effizienter [[Programmierung]] bedarf.
 
== Interdisziplinäre Arbeitsgebiete ==
 
=== Rheologie ===
{{Hauptartikel|Rheologie}}
Die Rheologie oder Fließkunde ist eine interdisziplinäre Wissenschaft, die sich mit dem Verformungs- und Fließverhalten von Materie beschäftigt, und berührt daher auch die Strömungsmechanik. Die ''phänomenologische Rheologie'' befasst sich mit der Formulierung von Materialmodellen, die ''Strukturrheologie'' trachtet danach, das makroskopische Materialverhalten aus der mikroskopischen Struktur der Stoffe zu erklären, und die ''Rheometrie'' stellt Messverfahren zur Bestimmung der rheologischen Eigenschaften, z.&nbsp;B. der [[Viskosität]], bereit.
 
=== Fluidenergiemaschinen ===
{{Hauptartikel|Fluidenergiemaschine}}
Eine mit dem [[Maschinenbau]] zusammen arbeitende Disziplin sucht mit Integralformen der Grundgleichungen makroskopische Größen der Strömungen abzuleiten, wie Volumenströme, Kräfte, Arbeiten und Leistungen. Diese Größen sind in Ingenieursproblemen in Fluidenergiemaschinen von besonderem Interesse. Eine der ersten Resultate auf diesem Gebiet formulierte Leonhard Euler in der nach ihm benannten [[Eulersche Turbinengleichung|Euler’schen Turbinengleichung]].
 
=== Mikrofluidik ===
{{Hauptartikel|Mikrofluidik}}
[[Datei:LLNL-microreactor.jpg|mini|Ein [[Chemischer Reaktor|chemischer Mikroreaktor]]]]
 
Die Mikrofluidik ist das Teilgebiet der [[Mikrosystemtechnik]], das die Umströmung von Objekten oder Durchströmungen von Kanälen, bei Abmessungen kleiner als ein Millimeter, untersucht, siehe Bild. Die kontinuumsmechanische Behandlung von Strömungs- und Transportprozessen auf dieser Längenskala ist in vielen Fällen nicht ohne weiteres möglich. Es werden Korrekturen an den Gleichungen oder gar [[Molekulardynamik-Simulation]]en notwendig, um die Strömungsvorgänge korrekt wiederzugeben. Prominenter Anwendungsfall ist der Druckkopf eines [[Tintenstrahldrucker]]s. Aber auch der Aufbau eines vollständigen Analyselabors auf einem [[Die (Halbleitertechnik)|Chip]] ({{enS|[[Lab-on-a-chip]]}} für „Labor auf einem Chip“ oder ''micro-total-analysis system'' für „Mikro-vollständiges-Analyse-System“) erfordert die Kenntnis der Strömungs- und Transportprozesse auf der Mikroskala.<ref>{{Literatur |Autor=Nam-Trung Nguyen |Titel=Mikrofluidik. Entwurf, Herstellung und Charakterisierung |Verlag=Vieweg+Teubner Verlag |Datum=2004 |ISBN=978-3-519-00466-0}}</ref>
 
=== Bioströmungsmechanik ===
Die Bioströmungsmechanik befasst sich mit der Innen- und Umströmung von belebten Körpern, deren charakteristisches Merkmal unter anderem ist, von flexiblen und strukturierten Oberflächen berandet zu sein. Es wird die Fortbewegung von Einzellern, Kaulquappen und Fischen bis hin zu Walen im Wasser untersucht. Bei der Fortbewegung durch die Luft wird insbesondere der Vogelflug ergründet. Der Wärme- und Stofftransport in Lebewesen bei der Atmung, im Blut- und Lymphkreislauf und der Wasserkreislauf sind auch in der Medizin von Interesse.<ref>{{Literatur |Autor=H. Oertel |Titel=Bioströmungsmechanik. Grundlagen, Methoden und Phänomene |Auflage=2. |Verlag=Vieweg+Teubner |Datum=2012 |ISBN=978-3-8348-1765-5}}</ref>
 
=== Magnetohydrodynamik ===
{{Hauptartikel| Magnetohydrodynamik}}
Die Magnetohydrodynamik (MHD) berücksichtigt die elektrischen und magnetischen Eigenschaften von Flüssigkeiten, Gasen und [[Plasma (Physik)|Plasmen]] und untersucht zusätzlich die Bewegung unter Wirkung der vom Medium selbst erzeugten Felder und die Bewegung in äußeren Feldern. Die Bewegungsgleichungen sind die um elektrodynamische Kräfte erweiterten Euler-Gleichungen, deren Lösung sehr kompliziert werden kann. Durch weitere Annahmen können die Gleichungen jedoch vereinfacht werden, um ihre Lösung zu erleichtern. Die Annahme, dass die elektrische Leitfähigkeit des Plasmas unendlich groß ist, es daher also keinen elektrischen Widerstand besitzt, führt auf die „Ideale MHD“ im Gegensatz zur „resistiven MHD“ mit endlicher Leitfähigkeit. Typische Anwendungsgebiete der Magnetohydrodynamik sind die Strömungsbeeinflussung und die Strömungsmessung in [[Metallurgie]] und [[Halbleiter]]-[[Einkristall]]<nowiki />züchtung sowie die Beschreibung von Plasmen in [[Atmosphäre (Astronomie)|stellaren Atmosphären]] und [[Fusionsreaktor]]en.<ref>{{Literatur |Autor=Peter A. Davidson |Titel=An introduction to magnetohydrodynamics |Verlag=Cambridge Univ. Press |Ort=Cambridge |Datum=2006 |ISBN=978-0-521-79487-9}}</ref>
 
== Kontinuumsmechanische Grundlagen ==
Strömungen können aus den Augen der [[Statistische Mechanik|statistischen Mechanik]] als Partikelströme oder als [[Kontinuumsströmung]]en betrachtet werden. Letzterer Ansatz kommt aus der [[Kontinuumsmechanik]],<ref>{{Literatur |Autor=Peter Haupt |Titel=Continuum Mechanics and Theory of Materials |Verlag=Springer |Datum=2002 |ISBN=3-540-43111-X}}</ref> in der vom molekularen Aufbau der Fluide abgesehen wird und sie als Kontinuum angenähert werden, in dem die physikalischen Eigenschaften kontinuierlich über den Raum verschmiert sind. Dieser phänomenologische Ansatz erlaubt effizient realitätsnahe Vorhersagen zu formulieren. Die für die Strömungsmechanik relevanten kinematischen, physikalischen und konstitutiven kontinuumsmechanischen Gleichungen werden im Folgenden zusammengefasst.
 
=== Kinematik ===
Die Strömungsmechanik benutzt die [[eulersche Betrachtungsweise]], die die an einem festen Raumpunkt vorhandenen physikalischen Größen untersucht. Weil sich die physikalischen Gesetze auf materielle Punkte (hier: Fluidelemente) und nicht auf Raumpunkte beziehen, muss bei der Zeitableitung die [[substantielle Ableitung]] benutzt werden. Diese besteht aus einem lokalen und einem konvektiven Anteil:
 
: <math>\dot f
:=\frac{\mathrm{D}f}{\mathrm{D}t}
:=\frac{\partial f}{\partial t}+\operatorname{grad}(f)\cdot\vec v
=\frac{\partial f}{\partial t}+(\vec{v}\cdot\nabla)f
\,.</math>
 
Das vom Fluid transportierte Feld f kann [[Skalar (Mathematik)|skalar-]] oder [[vektor]]wertig sein und hängt wie die Geschwindigkeit vom Ort und der Zeit ab. Die [[partielle Ableitung]] <math>\tfrac{\partial f}{\partial t}</math> ist die ''lokale Ableitung'', d.&nbsp;h. die an einem festen Raumpunkt zu beobachtende Änderungsgeschwindigkeit, und der zweite Term mit dem [[Gradient (Mathematik)|Gradienten]] grad oder dem [[Nabla-Operator]] <math>\nabla</math> ist der ''konvektive Anteil''. Im Fall einer vektoriellen Größe <math>\vec f</math> wird in der Strömungsmechanik die Schreibweise mit dem [[Gradient (Mathematik)#Vektorgradient|Vektorgradient]] <math>(\vec{v}\cdot\nabla)\vec{f}</math> bevorzugt.
 
In der Strömungsmechanik ist die Geschwindigkeit <math>\vec v</math> die primäre Unbekannte und ihr Gradient, der [[Geschwindigkeitsgradient]]
 
: <math>\mathbf{l}:=\operatorname{grad}\vec v
=\begin{pmatrix}
\frac{\partial v_x}{\partial x}& \frac{\partial v_x}{\partial y}& \frac{\partial v_x}{\partial z}
\\
\frac{\partial v_y}{\partial x}& \frac{\partial v_y}{\partial y}& \frac{\partial v_y}{\partial z}
\\
\frac{\partial v_z}{\partial x}& \frac{\partial v_z}{\partial y}& \frac{\partial v_z}{\partial z}
\end{pmatrix}
</math>
 
ist eine zentrale Größe bei der Beschreibung von Strömungsvorgängen. Die Geschwindigkeitskomponenten <math>v_{x,y,z}</math> beziehen sich auf ein [[kartesisches Koordinatensystem]] mit x-, y- und z-Koordinaten. Für ein Fluidelement mit (infinitesimal) kleinem Volumen dv ergibt sich die Volumenänderungsgeschwindigkeit
 
:<math>\frac{\mathrm{D}}{\mathrm{D}t}(\mathrm{d}v)
=\operatorname{Sp}(\mathbf{l})\,\mathrm{d}v
\,.</math>
 
Die [[Spur (Mathematik)|Spur]] Sp des Geschwindigkeitsgradienten ist somit ein Maß für die Volumenänderungsgeschwindigkeit, die auf Grund der Massenbilanz unten mit einer Dichteänderung einher geht. Die Spur ist gleich der [[Divergenz eines Vektorfeldes|Divergenz]] div des [[Geschwindigkeitsfeld]]es: <math>\operatorname{Sp}(\mathbf{l})=\operatorname{div}(\vec v)\,.</math> Der Geschwindigkeitsgradient kann additiv in einen [[Symmetrische Matrix|symmetrischen]] Anteil '''d''' und einen [[Schiefsymmetrische Matrix|schiefsymmetrischen]] Anteil '''w''' zerlegt werden:
 
: <math>
\mathbf{l}=\mathbf{d+w}
\quad\text{mit}\quad
\mathbf{d}:=\frac{1}{2}(\mathbf{l+l}^\top)
\quad\text{und}\quad
\mathbf{w}:=\frac{1}{2}(\mathbf{l-l}^\top)\,.
</math>
 
Das Superskript <math>\top</math> bezeichnet die [[Transponierte Matrix|Transposition]]. Der symmetrische Anteil '''d''' ist der [[Geschwindigkeitsgradient#Dehn- und Schergeschwindigkeiten|Verzerrungsgeschwindigkeitstensor]], mit dem sich mit
 
:<math>\dot{\varepsilon}_{1}:=\hat{e}_1\cdot\mathbf{d}\cdot\hat{e}_1
\quad\text{und}\quad
\dot{\gamma}_{12}:=2\hat{e}_1\cdot\mathbf{d}\cdot\hat{e}_2
</math>
 
die Dehnungsgeschwindigkeit <math>\dot{\varepsilon}_{1}</math> in <math>\hat{e}_1</math>-Richtung und die [[Schergeschwindigkeit]] <math>\dot{\gamma}_{12}</math> in der 1-2-Ebene berechnet, die von zueinander senkrechten Einheitsvektoren (mit der Länge eins) <math>\hat{e}_{1,2}</math> aufgespannt wird. Der schiefsymmetrische Anteil '''w''' ist der ''Wirbeltensor'', dem über
 
: <math>\mathbf{w}\cdot\vec u =: \vec\Omega\times\vec u \quad\forall\vec u</math>
 
ein Vektor <math>\vec\Omega</math> zugeordnet werden kann, der im Fall des Wirbeltensors ''[[Winkelgeschwindigkeit]]'' genannt wird und die Drehgeschwindigkeit der Fluidelemente um sich selbst angibt. Nach obiger Definition berechnet sich
 
:<math>\vec\Omega=\frac{1}{2}\operatorname{rot}\vec v\,.</math>
 
Die [[Rotation (Mathematik)|Rotation]] rot des Geschwindigkeitsfeldes wird als ''[[Wirbelstärke]]'' oder ''Wirbelvektor'' bezeichnet:
 
:<math>\vec\omega:=\operatorname{rot}\vec v=2\vec\Omega\,.</math>
 
Gelegentlich wird auch <math>\vec\omega=\tfrac{1}{2}\operatorname{rot}\vec v</math> definiert, was keinen wesentlichen Unterschied ausmacht.
 
=== Naturgesetze ===
Die [[Kontinuumsmechanik]] formuliert die folgenden, an jedem Fluidelement geltenden Naturgesetze:
 
# Massenbilanz: <math>\frac{\partial}{\partial t}\rho +\operatorname{div}(\rho \vec{v})
= \frac{\partial \rho}{\partial t} + \operatorname{grad}(\rho)\cdot \vec{v}
+ \rho\,\operatorname{div}(\vec{v})
= \dot{\rho} + \rho \operatorname{div}(\vec{v})
=0</math>
# Impulsbilanz: <math>\rho\dot{\vec v}
=\rho\left[\frac{\partial}{\partial t}\vec{v}+\operatorname{grad}(\vec{v})\cdot\vec{v}\right]
=\rho\left[\frac{\partial}{\partial t}\vec{v}+(\vec{v}\cdot\nabla)\vec{v}\right]
=\rho\,\vec{k}+\operatorname{div}(\boldsymbol{\sigma})
\,,</math> und
# Energiebilanz: <math>\dot{u}=\frac{1}{\rho}\boldsymbol{\sigma}:\mathbf{d}
-\frac{1}{\rho}\operatorname{div}\;\vec{q}+r\,.</math>
 
Darin sind ρ die [[Dichte]], <math>\vec{k}</math> eine Schwerebeschleunigung, <math>\boldsymbol{\sigma}</math> der Cauchy’sche [[Spannungstensor]], u die [[innere Energie]], <math>\vec{q}</math> der Wärmestrom, <math>r</math> innere Wärmequellen z.&nbsp;B. aus Phasenübergängen, „<math>\cdot</math>“ das [[Frobenius-Skalarprodukt]] von Vektoren und „:“ dasjenige von Tensoren. Die Drehimpulsbilanz reduziert sich auf die Forderung nach der Symmetrie des Spannungstensors <math>(\boldsymbol{\sigma}=\boldsymbol{\sigma}^\top)\,.</math>
 
=== Materialmodelle ===
Abgeschlossen wird das System aus kinematischen und Bilanzgleichungen durch ein [[Materialmodell]] des Fluids, das den Spannungstensor in Abhängigkeit von dem Verzerrungsgeschwindigkeitstensor, der Dichte oder weiteren Konstitutivvariablen spezifiziert. Das Materialmodell der klassischen Materialtheorie für das linear viskose oder [[Newtonsches Fluid|newtonsche Fluid]]
 
:<math>\boldsymbol{\sigma}
=-p(\rho)\mathbf{I}+2\mu \mathbf{d}+\lambda \operatorname{Sp}(\mathbf{d})\mathbf{I}
</math>
 
ist das, in der Strömungsmechanik hauptsächlich benutzte Materialmodell. Darin sind p der im Allgemeinen von der Dichte ρ abhängige Druck, λ und μ die ersten und zweiten [[Lame-Konstanten#Strömungslehre|Lamé-Konstanten]] und '''I''' der [[Einheitstensor]]. Der Verzerrungsgeschwindigkeitstensor ist im Allgemeinen voll besetzt und dann treten geschwindigkeitsabhängige Schubspannungen auf, die sich makroskopisch als Viskosität bemerkbar machen. In Kombination mit der Impulsbilanz liefert dieses Modell die [[Navier-Stokes-Gleichungen]]. Weil der Druck, die Dichte und der Verzerrungsgeschwindigkeitstensor objektiv sind (siehe [[Euklidische Transformation]]), sind die Navier-Stokes-Gleichungen invariant gegenüber einem [[Bezugssystem#Wechsel des Bezugssystems|Wechsel des Bezugssystems]].
 
Im wichtigen Sonderfall der [[Inkompressibilität]], die bei Strömungsgeschwindigkeiten weit unterhalb der [[Schallgeschwindigkeit|Wellenausbreitungsgeschwindigkeit]] im Fluid in guter Näherung angenommen werden kann, vereinfacht sich diese Gleichung zu
 
:<math>\boldsymbol{\sigma}=-p\mathbf{I}+2\mu \mathbf{d}</math>
 
und der Druck p ergibt sich nicht mehr aus einer konstitutiven Beziehung, sondern allein aus den Randbedingungen und der Impulsbilanz. Bei großen Reynoldszahlen oder abseits von Grenzschichten können die viskosen Anteile vernachlässigt werden:
 
:<math>\boldsymbol{\sigma}=-p(\rho)\mathbf{I}\,.</math>
 
Ein Fluid mit diesem Spannungstensor gehorcht den [[Euler-Gleichungen (Strömungsmechanik)|Euler-Gleichungen der Strömungsmechanik]]. Wenn hier die Dichte eine [[Bijektivität|eineindeutige Funktion]] des Drucks ist, dann ist das Fluid [[Cauchy-Elastizität#Elastische Fluide|Cauchy-elastisch]] und konservativ, Kompressionsarbeit in ihm jedenfalls reversibel.
 
Neben diesen klassischen Materialmodellen betrachtet die Strömungsmechanik auch jedes andere fließende Material, unter anderem [[Plasma (Physik)|Plasma]], nicht-newtonsche Fluide oder [[Duktilität|duktile]] Materialien bei großen Verformungen, wo die [[Elastizität (Physik)|elastische]] Deformation gegenüber der [[Plastizitätstheorie|plastischen]] vernachlässigt werden kann.


== Siehe auch ==
== Siehe auch ==
* {{WikipediaDE|Kategorie:Strömungsmechanik}}
* {{WikipediaDE|Strömungsmechanik}}


* {{WikipediaDE|Zelle (Biologie)}}
== Literatur ==
* [[Embryo]]
* {{Literatur
  |Hrsg=H. Oertel
  |Titel=Prandtl-Führer durch die Strömungslehre. Grundlagen und Phänomene
  |Auflage=13.
  |Verlag=Springer Vieweg
  |Datum=2012
  |ISBN=978-3-8348-1918-5}}
* {{Literatur
  |Autor=F. Durst
  |Titel=Grundlagen der Strömungsmechanik
  |Verlag=Springer
  |Datum=2006
  |ISBN=3-540-31323-0}}
* {{Literatur
  |Autor=G. Bollrich
  |Titel=Technische Hydromechanik 1. Grundlagen
  |Verlag=Verlag Bauwesen
  |Datum=2007
  |ISBN=3-345-00912-9}}
* {{Literatur
  |Autor=A. Dillmann, K. Wieghardt
  |Titel=Theoretische Strömungslehre
  |Verlag=Universitätsverlag Göttingen
  |Datum=2005
  |ISBN=3-938616-33-4}}
* {{Literatur
  |Autor=George Keith Batchelor
  |Titel=An Introduction to Fluid Dynamics
  |Verlag=Cambridge University Press
  |Datum=1967
  |ISBN=0-521-04118-X}}
* {{Literatur
  |Autor=P. K. Kundu
  |Titel=Fluid Mechanics
  |Verlag=Academic Press
  |Datum=2015
  |ISBN=978-0-12-405935-1}}
* {{Literatur
  |Autor=Wolfgang Schröder
  |Titel=Fluidmechanik
  |Verlag=Wissenschaftsverlag Mainz in Aachen
  |Ort=Aachen
  |Datum=2004
  |ISBN=3-86130-371-X}}
* {{Literatur
  |Autor=Jann Strybny
  |Titel=Ohne Panik Strömungsmechanik
  |Auflage=2.
  |Verlag=Vieweg
  |Datum=2005
  |ISBN=3-528-13194-2}}


== Literatur ==
== Weblinks ==
{{Commonscat|Fluid mechanics|Strömungsmechanik}}
{{Wiktionary|Strömung}}
{{Wikibooks|Mechanik flüssiger und gasförmiger Körper}}


#Rudolf Steiner: ''Natur- und Geistwesen – ihr Wirken in unserer sichtbaren Welt'', [[GA 98]] (1996), ISBN 3-7274-0980-0 {{Vorträge|098}}
== Einzelnachweise ==
#Rudolf Steiner: ''Die Mission der neuen Geistesoffenbarung'', [[GA 127]] (1989), ISBN 3-7274-1270-4 {{Vorträge|127}}
<references />
#Rudolf Steiner: ''Initiationswissenschaft und Sternenerkenntnis'', [[GA 228]] (2002), ISBN 3-7274-2280-7 {{Vorträge|228}}
#Rudolf Steiner: ''Geisteswissenschaft und Medizin'', [[GA 312]] (1999), ISBN 3-7274-3120-2 {{Vorträge|312}}
#Rudolf Steiner: ''Das Verhältnis der verschiedenen naturwissenschaftlichen Gebiete zur Astronomie'', [[GA 323]] (1997), ISBN 3-7274-3230-6 {{Vorträge|323}}
#Rudolf Steiner: ''Über Gesundheit und Krankheit. Grundlagen einer geisteswissenschaftlichen Sinneslehre'', [[GA 348]] (1997), ISBN 3-7274-3480-5 {{Vorträge|348}}


{{GA}}
{{Normdaten|TYP=s|GND=4077970-1}}


[[Kategorie:Zellbiologie]]
{{SORTIERUNG:Stromungsmechanik}}
[[Kategorie:Strömungsmechanik|!]]

Version vom 11. Juli 2020, 01:40 Uhr

Die Strömungsmechanik, Fluidmechanik oder Strömungslehre ist die Wissenschaft vom physikalischen Verhalten von Fluiden. Die in der Strömungsmechanik gewonnenen Kenntnisse sind Gesetzmäßigkeiten in Strömungsvorgängen und dienen der Lösung von Strömungsproblemen in der Auslegung von durch- bzw. umströmten Bauteilen sowie der Überwachung von Strömungen. Angewendet wird sie unter anderem im Maschinenbau, Chemieingenieurwesen, der Wasser- und Energiewirtschaft, Meteorologie, Astrophysik und der Medizin. Ihre Grundlagen findet sie in der Kontinuumsmechanik und Thermodynamik, also der klassischen Physik.

Historische Entwicklung

Die Strömungsmechanik beruht auf der Kontinuumsmechanik, Physik und Differentialrechnung, deren jeweiliger historischer Werdegang dort nachgeschlagen werden kann. An dieser Stelle soll die spezifisch strömungsmechanische Entwicklung skizziert werden.

Archimedes (287–212 v. Chr.) befasste sich mit strömungsmechanischen Fragestellungen (Archimedisches Prinzip, Archimedische Schraube). Sextus Iulius Frontinus (ca. 35–103 n. Chr.) dokumentierte seine Kenntnisse über die Wasserversorgung in der Antike, über tausend Jahre bevor sich Leonardo da Vinci (1452–1519) mit Strömungsvorgängen auseinandersetzte.

Galileo Galilei (1564–1642) gab Impulse in der experimentellen Hydrodynamik und überarbeitete das von Aristoteles eingeführte Konzept des Vakuums. Evangelista Torricelli (1608–1647) erkannte im Gewicht der Erdatmosphäre die Ursache des Luftdrucks und verband den horizontal ausgestoßenen Flüssigkeitsstrahl mit den Gesetzen des freien Falls (Torricelli’sches Ausflussgesetz). Blaise Pascal (1623–1662) beschäftigte sich unter anderem mit der Hydrostatik und formulierte den Satz von der allseitigen Druckfortpflanzung. Edme Mariotte (1620–1684) lieferte Beiträge zu Problemen der Flüssigkeiten und Gase und stellte dabei erste Konstitutivgesetze auf. Henri de Pitot (1695–1771) untersuchte den Staudruck in Strömungen.

Isaac Newton veröffentlichte 1686 seine dreibändige Principia mit den Bewegungsgesetzen und definierte zudem im zweiten Buch die Viskosität einer idealen (newtonschen) Flüssigkeit. Daniel Bernoulli (1700–1782) begründete die Hydromechanik, indem er Druck und Geschwindigkeit in der nach ihm benannten Energiegleichung verband und Leonhard Euler (1707–1783) formulierte die Bewegungsgleichungen für ideale Flüssigkeiten. Von nun an konnten Erkenntnisse auch durch Untersuchungen der mathematischen Gleichungen gewonnen werden. Jean-Baptiste le Rond d’Alembert (1717–1783) führte die eulersche Betrachtungsweise und komplexe Zahlen in der Potentialtheorie ein, leitete die lokale Massenbilanz her und formulierte das d’Alembert’sche Paradoxon, demgemäß von der Strömung idealer Flüssigkeiten auf einen Körper keine Kraft in Richtung der Strömung ausgeübt wird (was Euler schon vorher bewies). Wegen dieser und anderer Paradoxien reibungsfreier Strömungen war klar, dass die Euler’schen Bewegungsgleichungen zu ergänzen sind.

Claude Louis Marie Henri Navier (1785–1836) und George Gabriel Stokes (1819–1903) erweiterten die Euler’schen Bewegungsgleichungen um viskose Terme zu den Navier-Stokes-Gleichungen, die Strömungen realitätsnah modellieren. Giovanni Battista Venturi (1746–1822), Gotthilf Heinrich Ludwig Hagen (1797–1884) und Jean Léonard Marie Poiseuille (1799–1869) führten experimentelle Untersuchungen in Strömungen durch. William Froude (1810–1879) ermittelte den Schwimmwiderstand von Schiffen, Ernst Mach (1838–1916) leistete Pionierarbeit in der Überschallaerodynamik, Lord Rayleigh (1842–1919) untersuchte hydrodynamische Instabilitäten und Vincent Strouhal (1850–1922) erforschte die Schwingungsanregungen durch ablösende Wirbel. Hermann von Helmholtz (1821–1894) formulierte die nach ihm benannten Wirbelsätze und begründete durch mathematisch ausgearbeitete Untersuchungen über Wirbelstürme und Gewitter die wissenschaftliche Meteorologie. Weitere bahnbrechende Arbeiten wurden von Osborne Reynolds (1832–1912, Reynolds-Gleichungen, Reynoldszahl) und Ludwig Prandtl (1875–1953, unter anderem zur hydrodynamischen Grenzschicht) vorgelegt.

Andrei Nikolajewitsch Kolmogorow (1903–1987) erweiterte die Theorie der turbulenten Strömung. Ab Mitte des 20. Jahrhunderts entwickelten sich die Strömungsmesstechnik und numerische Strömungsmechanik so weit, dass mit ihrer Hilfe Lösungen für praktische Probleme gefunden werden können.[1]

Methodik

Gegenstand der Strömungsmechanik sind die Bewegungen von Fluiden, ruhenden, fließenden oder strömenden Medien. Die Suche nach Gesetzmäßigkeiten von Bewegungen und Lösungen für Strömungsprobleme bedient sich dreierlei Methoden:

Analytische Methoden
Gesetzmäßigkeiten werden in Form von Gleichungen formuliert, die mit Hilfe der angewandten Mathematik behandelt werden können.
Experimentelle Methoden
Die Phänomenologie der Strömungsvorgänge wird erkundet mit dem Ziel Gesetzmäßigkeiten herauszufinden.
Numerische Methoden
Durch einen detaillierten Einblick auch in komplizierte und kurzzeitige Strömungsvorgänge unterstützen und ergänzen die Berechnungen die analytischen und experimentellen Methoden.

Die Komplexität des Gegenstandes macht die kombinierte Nutzung aller drei Methoden für die Lösung praktischer Strömungsprobleme notwendig.

Teilgebiete

Fluidstatik

Hydrostatisches Paradoxon: Der Flüssigkeitsdruck am Boden (rot) ist in allen drei Gefäßen identisch.

Die Fluidstatik betrachtet ruhende Fluide, wobei die Hydrostatik Inkompressibilität voraussetzt, die Wasser in guter Näherung aufweist. Hier interessiert die Druckverteilung in ruhenden Flüssigkeiten und die daraus resultierenden Kräfte auf Behälterwände, siehe Bild. Schwimmende Körper erfahren einen statischen Auftrieb und es interessiert die Frage, unter welchen Voraussetzungen die Schwimmstabilität des Körpers gegeben ist. Thermische Effekte sind hier von untergeordneter Bedeutung.

Die Aerostatik betrachtet die Gesetzmäßigkeiten in ruhender Atmosphäre oder Erdatmosphäre und hier sind Dichteänderungen und thermische Effekte ausschlaggebend. Betrachtet wird beispielsweise die Atmosphärenschichtung und die Druck- und Temperaturverteilung über die Höhe in der Erdatmosphäre.

Ähnlichkeitstheorie

Windkanal der NASA mit dem Modell einer MD-11

Die Ähnlichkeitstheorie beschäftigt sich damit, aus einem bekannten und zugänglichen (Modell)-System Rückschlüsse auf ein interessierendes aber experimentell unzugängliches (Real)-System zu bilden, das z. B. größer oder kleiner, schneller oder langsamer oder sich in anderen Dimensionen nur quantitativ vom Modellsystem unterscheidet, siehe Bild. Kinematisch ähnlich sind zwei Strömungen, wenn sie ähnliche räumliche Bewegungen ausführen. Voraussetzung hierfür ist, dass ähnliche Randbedingungen vorliegen (geometrische Ähnlichkeit) und auf die Fluidelemente ähnliche Kräfte wirken, was dynamische Ähnlichkeit bedeutet. Die Ähnlichkeitsbetrachtungen werden auch auf Wärmetransportprobleme bei thermischer Ähnlichkeit angewendet. Begründet wurde die Ähnlichkeitstheorie 1883 von Osborne Reynolds in Form des Reynolds’schen Ähnlichkeitsgesetzes, das besagt, dass die Strömungen am Original und am Modell mechanisch ähnlich verlaufen, wenn die Reynolds-Zahlen übereinstimmen.

Stromfadentheorie

Die Stromfadentheorie betrachtet Strömungen entlang einer von Stromlinien gebildeten, (infinitesimal) dünnen Stromröhre, in der die Zustandsgrößen Geschwindigkeit, Druck, Dichte und Temperatur als über den Querschnitt des Stromfadens konstant angenommen werden können. Auf diese Volumina können die Integralformen der Grundgleichungen angewendet werden, um so weitere Lösungen von Strömungsproblemen zu erarbeiten. Ein stationäres Strömungsgebiet besteht aus Stromfäden, so dass es gelingt die globalen Eigenschaften der Strömung mit den Eigenschaften der Stromfäden zu beschreiben. Prominenter Anwendungsfall ist die Strömung durch Röhren und Düsen. Die Gesamtheit der eindimensionalen Strömungen von Wasser werden unter dem Sammelnamen Hydraulik zusammengefasst.[2] Die Fluidtechnik und Fluidik wenden die Hydraulik und Pneumatik an, um Energie zu übertragen oder Signale zu verarbeiten.

Potentialströmungen

Stromlinien um ein Flügelprofil

In Potentialströmungen ergibt sich das Geschwindigkeitsfeld aus der Ableitung eines Geschwindigkeitspotentials, weshalb solche Strömungen grundsätzlich reibungs- und rotationsfrei sind. Eine laminare Strömung bei niedrigen Reynolds-Zahlen folgt in guter Näherung einer Potentialströmung, wenn die fluiddynamische Grenzschicht an den Rändern der Strömung keine wesentliche Rolle spielt. Die Potentialtheorie findet Anwendung in der Auslegung und im Design von Flugzeugen. Potentialströmungen sind relativ einfach zu berechnen und erlauben analytische Lösungen für viele Strömungsprobleme.

Eine andere Idealisierung, die Rotation erlaubt, aber nur inkompressible Medien betrachtet, gestattet die Einführung einer Stromfunktion. Diese ist allerdings nur in ebenen oder als Stokessche Stromfunktion in drei dimensionalen, axialsymmetrischen Fällen anwendbar. Die Höhenlinien der Stromfunktionen sind Stromlinien.

In ebenen, dichtebeständigen und rotationsfreien Strömungen kann das Geschwindigkeitsfeld mit komplexen Funktionen ausgedrückt und somit deren weitreichenden Eigenschaften ausgenutzt werden. Mit Hilfe dieser Theorie konnten Anfang des 20. Jahrhunderts erste auftriebserzeugende Flügelprofile entwickelt werden, siehe Bild.

Gasdynamik

Der Gegenstand der Gasdynamik sind schnelle Strömungen dichteveränderlicher Fluide, die bei Flugzeugen und in Düsen vorkommen. Diese Strömungen werden durch die Mach-Zahl M charakterisiert. Kompressibilität wird erst ab Machzahlen größer 0,2 bedeutsam, so dass dann hohe Reynolds-Zahlen vorliegen und Viskositätsterme und Gravitionskräfte vernachlässigbar sind. Die Strömungen sind auch schneller als der Wärmetransport, weswegen adiabatische Zustandsänderungen angenommen werden können. Die Gesetzmäßigkeiten werden mit der Stromfaden- und Ähnlichkeitstheorie abgeleitet. Ein besonderes Phänomen, das hier auftreten kann, ist die Stoßwelle und der Verdichtungsstoß, dessen bekanntester Vertreter die Schallmauer ist.

Fluiddynamik

Stokes’sche Welle mit Bahnlinien (türkis) einiger Wasserteilchen

Die Fluiddynamik ist das Teilgebiet, das sich mit bewegten Fluiden beschäftigt. Analytische Lösungen können hier nur durch Beschränkung auf eine oder zwei Dimensionen, auf Inkompressibilität, einfache Randbedingungen und auf kleine Reynolds-Zahlen erreicht werden, wo die Beschleunigungsterme gegenüber den Viskositätstermen vernachlässigt werden können. Zwar sind solche Lösungen praktisch wenig relevant, vertiefen jedoch trotzdem das Verständnis von Strömungsvorgängen.

Bei kleinen Reynoldszahlen vermag die Viskosität des Fluids kleine Fluktuationen der Strömungsvariablen zu dämpfen, so dass eine eventuell auch zeitabhängige, laminare Strömung dann stabil gegenüber kleinen Störungen ist. Mit zunehmender Reynolds-Zahl wird dieser Dämpfungsmechanismus überfordert und die laminare Strömung geht in eine irreguläre turbulente Strömung über. Die Turbulenzforschung erreicht Einsichten über solche Strömungen durch statistische Betrachtungen.

Bei großen Reynoldszahlen sind umgekehrt die Viskositätsterme gegenüber den Beschleunigungstermen klein und der Einfluss der Randbedingungen auf die Strömung ist auf wandnahe Bereiche beschränkt. Mit diesen beschäftigt sich die von Ludwig Prandtl begründete Grenzschichttheorie.

Die Aerodynamik untersucht das Verhalten von Körpern in kompressiblen Fluiden (zum Beispiel Luft) und ermittelt Kräfte und Momente, die auf umströmte Körper wirken. Zur Aerodynamik gehört die Vorhersage der Windkräfte auf Gebäude, Kraftfahrzeuge und Schiffe.

Das Wissensgebiet um die Wellenbewegungen in Fluiden befasst sich mit zeitlichen und räumlichen Bewegungen eines Fluids um eine mittlere Ruhelage. Die Aeroakustik beschäftigt sich mit den Gesetzmäßigkeiten solcher Wellen – Schallwellen – in der Luft. Die Hydromechanik unterscheidet u. a. die Schwerewellen, die höheren Stokes-Wellen, siehe Bild, die kleinen Kapillarwellen und die aperiodischen Solitonen. In der Fluiddynamik werden die Ursachen, Eigenschaften und die Grundgleichungen dieser Wellenbewegungen untersucht.

Mehrphasenströmungen mit festen, flüssigen und/oder gasförmigen Anteilen sind die in der Natur und Technik am häufigsten auftretenden Strömungsformen und bekommen dadurch eine besondere Relevanz. Die Mischung kann einerseits bereits im Kontinuumsmodell dargestellt werden, so dass die Mischung in jedem Fluidelement vorliegt, was Vorteile bei der Betrachtung großskaliger Bewegungen hat. Andererseits kann die Strömung jeder Phase getrennt beschrieben werden und die Gesamtströmung ergibt sich dann aus der Interaktion der Phasen an ihren Grenzflächen. Hier stehen kleinskalige Effekte im Vordergrund.

Sickerströmungen durch poröse Medien sind in der Hydrogeologie und der Filtertechnik von Interesse. Die Oberflächenspannung, die sonst bei Strömungen von untergeordneter Bedeutung ist, ist hier für die Bewegung bestimmend. Weil der Porenverlauf der festen Phase unbekannt ist, kommen Modelle zum Einsatz, die in die Richards-Gleichung münden.

Lineare Stabilitätstheorie

Kelvin-Helmholtz-Wirbel in der Atmosphäre hinter dem Monte Duval, Australien

Dieses Fachgebiet untersucht, inwieweit der Bewegungszustand einer Flüssigkeit stabil ist gegenüber kleinen Störungen. Betrachtet wird die Strömung an einer Grenzschicht, die zu einer Wand (Hydrodynamische Grenzschicht) oder zu einer Flüssigkeit mit anderen Eigenschaften liegen kann. Fluktuationen in dieser Grenzschicht können bei Instabilitäten zu qualitativ anderen Zuständen führen, die oftmals deutliche Strukturen aufweisen (siehe Kelvin-Helmholtz-Instabilität im Bild).

Strömungsmesstechnik

2D-Laser-Doppler-Anemometer an einem Strömungskanal

Einsatzgebiete der Strömungsmesstechnik sind die Forschung und Entwicklung, wo es gilt, Strömungsvorgänge zu untersuchen oder zu optimieren. Die Strömungsmesstechnik ist aber auch eine wesentliche Komponente für die Prozessführung in industriellen Anlagen der Chemie- oder Energiewirtschaft. Verlässliche Informationen über Eigenschaften turbulenter Strömungen können nur durch die Strömungsmesstechnik erhalten werden.

Von besonderem Interesse sind die grundlegenden Größen Geschwindigkeit, Druck und Temperatur. Messungen können mit in die Strömung eingebrachten Messsonden aufgenommen werden. Staudrucksonden messen im Fluid den Gesamtdruck, aus dem indirekt auf die Geschwindigkeit rückgeschlossen werden kann. Die Thermische Anemometrie stellt eine weitere indirekte Geschwindigkeitsmessmethode dar. Der Nachteil an diesen indirekten Messungmethoden ist, dass das Messsignal nicht allein von der Geschwindigkeit, sondern auch von anderen Zustandsgrößen abhängt, die also bekannt sein müssen.

Verfahren wie die Particle Image Velocimetry und Laser-Doppler-Anemometrie (siehe Bild) gestattet die direkte und lokale Geschwindigkeitsmessung ohne Sonden. Insbesondere in der Aeroakustik interessieren nicht die Durchschnittswerte, sondern die Schwankungswerte des Drucks, insbesondere die spektrale Leistungsdichte, die durch weitere Signalverarbeitung erhalten wird.

Numerische Strömungsmechanik

Visualisierung einer CFD-Simulation der Boeing X-43 bei Mach 7

Die Leistungsfähigkeit der Computer gestattet es, die Grundgleichungen in wirklichkeitsnahen Randwertproblemen zu lösen und die erzielten, realitätsnahen Resultate haben dazu geführt, dass die numerische Strömungsmechanik ein wichtiges Werkzeug in der Strömungsmechanik wurde. In der aerodynamischen Auslegung und Optimierung haben sich die numerischen Methoden etabliert, denn sie gestatten einen detaillierten Einblick in die Strömungsvorgänge, siehe Bild, und Untersuchung von Modellvarianten.

Die aus der angewandten Mathematik bekannten Methoden zur Lösung gewöhnlicher Differentialgleichungen versehen vorbereitend das Strömungsgebiet mit einem „numerischen Gitter“. Potentialströmungen verlangen den geringsten Aufwand und auch die Euler-Gleichungen erlauben relativ grobe Gitter. Die bei Anwendung der Navier-Stokes-Gleichungen bedeutsamen Grenzschichten und Turbulenzen erfordern eine hohe räumliche Auflösung des Gitters. In drei Dimensionen steigt die Anzahl der Freiheitsgrade mit der dritten Potenz der Abmessung, so dass auch noch im 21. Jahrhundert der Aufwand für die Direkte Numerische Simulation bei Anwendungen in der Fahrzeugentwicklung nicht vertretbar ist. Daher kommen Turbulenzmodelle zum Einsatz, die die notwendige Auflösung zu reduzieren gestatten. Trotzdem sind oftmals Systeme mit mehreren zehnmillionen Gleichungen für mehrere tausend Iterations- oder Zeitschritte zu lösen, was eines Rechnerverbunds und effizienter Programmierung bedarf.

Interdisziplinäre Arbeitsgebiete

Rheologie

Hauptartikel: Rheologie

Die Rheologie oder Fließkunde ist eine interdisziplinäre Wissenschaft, die sich mit dem Verformungs- und Fließverhalten von Materie beschäftigt, und berührt daher auch die Strömungsmechanik. Die phänomenologische Rheologie befasst sich mit der Formulierung von Materialmodellen, die Strukturrheologie trachtet danach, das makroskopische Materialverhalten aus der mikroskopischen Struktur der Stoffe zu erklären, und die Rheometrie stellt Messverfahren zur Bestimmung der rheologischen Eigenschaften, z. B. der Viskosität, bereit.

Fluidenergiemaschinen

Eine mit dem Maschinenbau zusammen arbeitende Disziplin sucht mit Integralformen der Grundgleichungen makroskopische Größen der Strömungen abzuleiten, wie Volumenströme, Kräfte, Arbeiten und Leistungen. Diese Größen sind in Ingenieursproblemen in Fluidenergiemaschinen von besonderem Interesse. Eine der ersten Resultate auf diesem Gebiet formulierte Leonhard Euler in der nach ihm benannten Euler’schen Turbinengleichung.

Mikrofluidik

Ein chemischer Mikroreaktor

Die Mikrofluidik ist das Teilgebiet der Mikrosystemtechnik, das die Umströmung von Objekten oder Durchströmungen von Kanälen, bei Abmessungen kleiner als ein Millimeter, untersucht, siehe Bild. Die kontinuumsmechanische Behandlung von Strömungs- und Transportprozessen auf dieser Längenskala ist in vielen Fällen nicht ohne weiteres möglich. Es werden Korrekturen an den Gleichungen oder gar Molekulardynamik-Simulationen notwendig, um die Strömungsvorgänge korrekt wiederzugeben. Prominenter Anwendungsfall ist der Druckkopf eines Tintenstrahldruckers. Aber auch der Aufbau eines vollständigen Analyselabors auf einem Chip (eng. Lab-on-a-chip für „Labor auf einem Chip“ oder micro-total-analysis system für „Mikro-vollständiges-Analyse-System“) erfordert die Kenntnis der Strömungs- und Transportprozesse auf der Mikroskala.[3]

Bioströmungsmechanik

Die Bioströmungsmechanik befasst sich mit der Innen- und Umströmung von belebten Körpern, deren charakteristisches Merkmal unter anderem ist, von flexiblen und strukturierten Oberflächen berandet zu sein. Es wird die Fortbewegung von Einzellern, Kaulquappen und Fischen bis hin zu Walen im Wasser untersucht. Bei der Fortbewegung durch die Luft wird insbesondere der Vogelflug ergründet. Der Wärme- und Stofftransport in Lebewesen bei der Atmung, im Blut- und Lymphkreislauf und der Wasserkreislauf sind auch in der Medizin von Interesse.[4]

Magnetohydrodynamik

Die Magnetohydrodynamik (MHD) berücksichtigt die elektrischen und magnetischen Eigenschaften von Flüssigkeiten, Gasen und Plasmen und untersucht zusätzlich die Bewegung unter Wirkung der vom Medium selbst erzeugten Felder und die Bewegung in äußeren Feldern. Die Bewegungsgleichungen sind die um elektrodynamische Kräfte erweiterten Euler-Gleichungen, deren Lösung sehr kompliziert werden kann. Durch weitere Annahmen können die Gleichungen jedoch vereinfacht werden, um ihre Lösung zu erleichtern. Die Annahme, dass die elektrische Leitfähigkeit des Plasmas unendlich groß ist, es daher also keinen elektrischen Widerstand besitzt, führt auf die „Ideale MHD“ im Gegensatz zur „resistiven MHD“ mit endlicher Leitfähigkeit. Typische Anwendungsgebiete der Magnetohydrodynamik sind die Strömungsbeeinflussung und die Strömungsmessung in Metallurgie und Halbleiter-Einkristallzüchtung sowie die Beschreibung von Plasmen in stellaren Atmosphären und Fusionsreaktoren.[5]

Kontinuumsmechanische Grundlagen

Strömungen können aus den Augen der statistischen Mechanik als Partikelströme oder als Kontinuumsströmungen betrachtet werden. Letzterer Ansatz kommt aus der Kontinuumsmechanik,[6] in der vom molekularen Aufbau der Fluide abgesehen wird und sie als Kontinuum angenähert werden, in dem die physikalischen Eigenschaften kontinuierlich über den Raum verschmiert sind. Dieser phänomenologische Ansatz erlaubt effizient realitätsnahe Vorhersagen zu formulieren. Die für die Strömungsmechanik relevanten kinematischen, physikalischen und konstitutiven kontinuumsmechanischen Gleichungen werden im Folgenden zusammengefasst.

Kinematik

Die Strömungsmechanik benutzt die eulersche Betrachtungsweise, die die an einem festen Raumpunkt vorhandenen physikalischen Größen untersucht. Weil sich die physikalischen Gesetze auf materielle Punkte (hier: Fluidelemente) und nicht auf Raumpunkte beziehen, muss bei der Zeitableitung die substantielle Ableitung benutzt werden. Diese besteht aus einem lokalen und einem konvektiven Anteil:

Das vom Fluid transportierte Feld f kann skalar- oder vektorwertig sein und hängt wie die Geschwindigkeit vom Ort und der Zeit ab. Die partielle Ableitung ist die lokale Ableitung, d. h. die an einem festen Raumpunkt zu beobachtende Änderungsgeschwindigkeit, und der zweite Term mit dem Gradienten grad oder dem Nabla-Operator ist der konvektive Anteil. Im Fall einer vektoriellen Größe wird in der Strömungsmechanik die Schreibweise mit dem Vektorgradient bevorzugt.

In der Strömungsmechanik ist die Geschwindigkeit die primäre Unbekannte und ihr Gradient, der Geschwindigkeitsgradient

ist eine zentrale Größe bei der Beschreibung von Strömungsvorgängen. Die Geschwindigkeitskomponenten beziehen sich auf ein kartesisches Koordinatensystem mit x-, y- und z-Koordinaten. Für ein Fluidelement mit (infinitesimal) kleinem Volumen dv ergibt sich die Volumenänderungsgeschwindigkeit

Die Spur Sp des Geschwindigkeitsgradienten ist somit ein Maß für die Volumenänderungsgeschwindigkeit, die auf Grund der Massenbilanz unten mit einer Dichteänderung einher geht. Die Spur ist gleich der Divergenz div des Geschwindigkeitsfeldes: Der Geschwindigkeitsgradient kann additiv in einen symmetrischen Anteil d und einen schiefsymmetrischen Anteil w zerlegt werden:

Das Superskript bezeichnet die Transposition. Der symmetrische Anteil d ist der Verzerrungsgeschwindigkeitstensor, mit dem sich mit

die Dehnungsgeschwindigkeit in -Richtung und die Schergeschwindigkeit in der 1-2-Ebene berechnet, die von zueinander senkrechten Einheitsvektoren (mit der Länge eins) aufgespannt wird. Der schiefsymmetrische Anteil w ist der Wirbeltensor, dem über

ein Vektor zugeordnet werden kann, der im Fall des Wirbeltensors Winkelgeschwindigkeit genannt wird und die Drehgeschwindigkeit der Fluidelemente um sich selbst angibt. Nach obiger Definition berechnet sich

Die Rotation rot des Geschwindigkeitsfeldes wird als Wirbelstärke oder Wirbelvektor bezeichnet:

Gelegentlich wird auch definiert, was keinen wesentlichen Unterschied ausmacht.

Naturgesetze

Die Kontinuumsmechanik formuliert die folgenden, an jedem Fluidelement geltenden Naturgesetze:

  1. Massenbilanz:
  2. Impulsbilanz: und
  3. Energiebilanz:

Darin sind ρ die Dichte, eine Schwerebeschleunigung, der Cauchy’sche Spannungstensor, u die innere Energie, der Wärmestrom, innere Wärmequellen z. B. aus Phasenübergängen, „“ das Frobenius-Skalarprodukt von Vektoren und „:“ dasjenige von Tensoren. Die Drehimpulsbilanz reduziert sich auf die Forderung nach der Symmetrie des Spannungstensors

Materialmodelle

Abgeschlossen wird das System aus kinematischen und Bilanzgleichungen durch ein Materialmodell des Fluids, das den Spannungstensor in Abhängigkeit von dem Verzerrungsgeschwindigkeitstensor, der Dichte oder weiteren Konstitutivvariablen spezifiziert. Das Materialmodell der klassischen Materialtheorie für das linear viskose oder newtonsche Fluid

ist das, in der Strömungsmechanik hauptsächlich benutzte Materialmodell. Darin sind p der im Allgemeinen von der Dichte ρ abhängige Druck, λ und μ die ersten und zweiten Lamé-Konstanten und I der Einheitstensor. Der Verzerrungsgeschwindigkeitstensor ist im Allgemeinen voll besetzt und dann treten geschwindigkeitsabhängige Schubspannungen auf, die sich makroskopisch als Viskosität bemerkbar machen. In Kombination mit der Impulsbilanz liefert dieses Modell die Navier-Stokes-Gleichungen. Weil der Druck, die Dichte und der Verzerrungsgeschwindigkeitstensor objektiv sind (siehe Euklidische Transformation), sind die Navier-Stokes-Gleichungen invariant gegenüber einem Wechsel des Bezugssystems.

Im wichtigen Sonderfall der Inkompressibilität, die bei Strömungsgeschwindigkeiten weit unterhalb der Wellenausbreitungsgeschwindigkeit im Fluid in guter Näherung angenommen werden kann, vereinfacht sich diese Gleichung zu

und der Druck p ergibt sich nicht mehr aus einer konstitutiven Beziehung, sondern allein aus den Randbedingungen und der Impulsbilanz. Bei großen Reynoldszahlen oder abseits von Grenzschichten können die viskosen Anteile vernachlässigt werden:

Ein Fluid mit diesem Spannungstensor gehorcht den Euler-Gleichungen der Strömungsmechanik. Wenn hier die Dichte eine eineindeutige Funktion des Drucks ist, dann ist das Fluid Cauchy-elastisch und konservativ, Kompressionsarbeit in ihm jedenfalls reversibel.

Neben diesen klassischen Materialmodellen betrachtet die Strömungsmechanik auch jedes andere fließende Material, unter anderem Plasma, nicht-newtonsche Fluide oder duktile Materialien bei großen Verformungen, wo die elastische Deformation gegenüber der plastischen vernachlässigt werden kann.

Siehe auch

Literatur

  •  Prandtl-Führer durch die Strömungslehre. Grundlagen und Phänomene. 13. Auflage. Springer Vieweg, 2012, ISBN 978-3-8348-1918-5.
  •  F. Durst: Grundlagen der Strömungsmechanik. Springer, 2006, ISBN 3-540-31323-0.
  •  G. Bollrich: Technische Hydromechanik 1. Grundlagen. Verlag Bauwesen, 2007, ISBN 3-345-00912-9.
  •  A. Dillmann, K. Wieghardt: Theoretische Strömungslehre. Universitätsverlag Göttingen, 2005, ISBN 3-938616-33-4.
  •  George Keith Batchelor: An Introduction to Fluid Dynamics. Cambridge University Press, 1967, ISBN 0-521-04118-X.
  •  P. K. Kundu: Fluid Mechanics. Academic Press, 2015, ISBN 978-0-12-405935-1.
  •  Wolfgang Schröder: Fluidmechanik. Wissenschaftsverlag Mainz in Aachen, Aachen 2004, ISBN 3-86130-371-X.
  •  Jann Strybny: Ohne Panik Strömungsmechanik. 2. Auflage. Vieweg, 2005, ISBN 3-528-13194-2.

Weblinks

Commons: Strömungsmechanik - Weitere Bilder oder Audiodateien zum Thema
 Wiktionary: Strömung – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1.  F. Durst: Grundlagen der Strömungsmechanik. Springer, 2006, ISBN 3-540-31323-0, S. 10–16.
  2.  Prandtl-Führer durch die Strömungslehre. Grundlagen und Phänomene. 13. Auflage. Springer Vieweg, 2012, ISBN 978-3-8348-1918-5, S. 58.
  3.  Nam-Trung Nguyen: Mikrofluidik. Entwurf, Herstellung und Charakterisierung. Vieweg+Teubner Verlag, 2004, ISBN 978-3-519-00466-0.
  4.  H. Oertel: Bioströmungsmechanik. Grundlagen, Methoden und Phänomene. 2. Auflage. Vieweg+Teubner, 2012, ISBN 978-3-8348-1765-5.
  5.  Peter A. Davidson: An introduction to magnetohydrodynamics. Cambridge Univ. Press, Cambridge 2006, ISBN 978-0-521-79487-9.
  6.  Peter Haupt: Continuum Mechanics and Theory of Materials. Springer, 2002, ISBN 3-540-43111-X.